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1. •INTRODUCTION

The objectives of this report are to

(1) present algorithms suitable for mini-

computer application which will per-

form three different general opera-

tions used in computerized mapping:

the transformation of strings of con-

tour data into digital elevation

models, the transformation of a digi-

tal elevation model into a set of

contour strings, and the smoothing of

a digital elevation model by use of

various filtering and convolution

techniques.

(2) show sample results of the above op-

erations applied to specific data

sets using a range of operational

parameters.

(3) report on a comparison of the perfor-

mance of two interpolation algorithms

which can be used to resample digital

elevation modules.
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This work was performed by ZYCOR, Inc.

under Contract DAAK 70-80-C-0248 with the U.S. Army Engi-

neer Topographic Laboratories (ETL) and the Defense Map-

ping Agency Hydrographic/Topographic Center (DMAHTC).

The motivation for the study was the realization that

much of the computer software now available to DMAHTC and

ETL to perform automatic cartographic tasks is limited to

main-frame computers and does not make use of the latest

developments in the field of automated cartograhy. If

the future work of those agencies is to be performed

using digital techniques, then superior algorithms will

have to be developed to match the more powerful hardware

tools which are becoming available. With this in mind

new algorithms were created to perform the tasks listed

under (1) above. With further testing and development,

these algorithms may provide a software package which can

handle most of the different types of data and mapping

problems to which they are applicable.

While these algorithms were being develop-

ed it was realized that very little was known about the

performance of the available algorithms for carrying out

interpolation operations on square grids of two-dimen-

sional data. Therefore part of this study effort was ex-

panded to include a comparison of two algorithms which
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appear reasonable candidates for handling digital terrain

models efficiently and accurately. Unlike the algorithms

described above, the grid resampling techniques are not

in themselves mapping tools. Rather, they are algorithms

which can be used as a part of a complete grid-to-grid

resampling program.

Two interim technical reports have already

been delivered under this contract. The first discussed

the mathematical development and preliminary design con-

siderations. The second (Reference 1) discussed program

inputs, outputs, and control parameters, and also pre-

sented some sample results. Material in *-hose reports

relevant to the development of the algorithms is included

in the final report.

Section 2 of this report describes the

test data made available by the Engineer Topographic Lab-

oratories (ETL). This data was originally in the form of

contour strings covering a 7.5 minute rectangle in south-

ern A~rizona. It was broken L'nto strings corresponding to

smaller areas and used in several different ways to pro-

vide data for testing the algorithms discussed in this

report.

Section 3 discusses the algorithm to per-

form the transformation of contour strings and similar

data such as drain and ridge lines and lake boundaries

into digital terrain models. The development of the

3



algorithm is described. An overview of its operation is

given. Results of testing this algorithm using the data

described in Section 2 are provided.

Section 4 discusses the algorithm to per-

form the transformation of digital terrain models into

contour strings. This algorithm is essentially the

inverse of the contour-to-grid algorithm. The develop-

ment of the algorithm is described. An overview of its

operation is given. Again, results of testing this algo-

rithm using the data described in Section 2 are provided.

Section 5 discusses a variety of algo-

rithms for smoothing terrain elevation models. Use of

these algorithms may be an independent step or a post

processing step which is part of the grid-to-contour or

contour-to-grid algorithms. Techniques considered in-

clude one step least squares operators and recursive con-

volution operators with a number of different con-

straints. Testing was carried out and conclusions and

recommendations are provided.

Section 6 is a comparison of the Akima and

Jancaitis algorithms for two-dimensional interpolation.

They are compared based on statistical performance, visu-

al interpretation, timing, and frequency characteris-

tics. Recommendations are made on choosing between the

two algorithms.

4



Finally, Section 7 contains a general re-

view, conclusions, and recommendations, including sum-

maries of those given in prior sections. A discussion of

future work required in this area is included.

b.



2. TEST DATA

DMwA/ETL provided ZYCOR with digitized con-

tour data for a 7.5 minute x 7.5 minute quadrangle in

southern Arizona to be used as the basis for test data

for this report. Also provided were digitized drain and

ridge lines and digitized lake boundaries for the same

area. All data were digitized at a resolution of approx-

imately 16 meters.

The supplied data had problems which re-

quired attention. In areas of large gradient the auto-

matic digitization process utijLized to create the contour

strings from an existing contour map had difficulty in

following individual contours. The result was an occa-

sionial pattern of digitized contours which crossed each

other or terminated suddenly and arbitrarily . The pres-

ence of erroneous data made it difficult to find suitable

test areas, especially ones with significant terrain

variation. Careful picking of test areas surmounted this

problem. The drain and ridge data were extremely noisy.

Editing of the data was required both to smooth it and to

make it agree with the contour data.

The data were partitioned by ZYCOR into

sima~ler test areas which provided inputs to the various

programs described in this report. The raw contours,



drains and ridge lines, and lake boundaries were used as

inputs to the contour-to-grid algorithm discussed in Sec-

tion 3. The digitized terrain models produced were used

as inputs to the grid-to-contour algorithms discussed in

Section 4, and to the smoothing and generalization algo-

rithms discussed in Section 5. Figures 2.1 and 2.2 show

the digitized areas which provided the test sets utilized

in Sections 3 and 5. The labels along the sides corres-

pond to the digitizing coordinates.

Three small local areas were chosen to be

used in testing the grid-to-contour algorithm discussed

in Section 4.0. Other larger areas were utilized as data

for the resampling study as discussed in Section 6. The

test areas utilized are discussed in that section.

7
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3. CONTOUR-TO-GRID INTERPOLATION

3.1 OVERVIEW. Contour-to-Grid (CTOG) is the name

of a new computer program which transforms vectorized

contours and related geomorphic data into digital terrain

models (DTM). It is expected that CTOG will become an

important step in DMA operations to produce a digital

data base from its extensive library of maps and charts.

With some added work, the CTOG algorithm could become a

powerful grid editing tool. In that capacity it would be

used to synthesize elevation values from contour maps in

areas where photogrammetric techniques were not satisfac-

tory.

The CTOG algorithm is made up of three

processing steps. First, initial estimates of the grid

node values are obtained by interpolation from the input

data. Second, those grid nodes which are "close" to the

input data are adjusted to fit the data and fixed so that

they will not be changed by the last processing step.

Finally, the initialized, adjusted, and fixed grid is

filtered by a spatial convolution operator to produce a

smoothly varying surface in regions not closely tied to

the input data. An overview of these thee steps is givn

in Section 3.2 to 3.4 below. Certain technical details

are included in the appendices. A description of test

procedures and test results is given in Section 3.5.

10
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3. 2 INITIALIZATION. The initialization techniques

trnploy contours, ridgje and strei? lines, lake boundaries

and point elevations to derive a first approximation of

element values at the nodes of the grid. The initializa-

tion algorithm attempts to make use of the highly struc-

tured nature of the input data in a manner similar to

that used by an individual creating the grid by hand from

a contour map would make. To do this the algorithm, uses

the contour lines which the connected digitized points

represent rather than just the points themselves. This

contrasts strongly with conventional gridding algorithms

which usually treat the digitized contour points as

random elevation data.

Figure 3.1 illustrates the method for

selecting the contour lines which are used to compute an

initial estimate for a grid node elevation. In this par-

ticular example, four data points are selected to be used

to estimate the elevation at the indicated node. The

four points are found by searching two pairs of direc-

tions (up-down, and left-right in this case) until con-

tour lines are found. A point is selected at the first

intersection of a contour line with each of the straight

lines that emanate from the grid node.



LYCOR INC.

Grid Node Location

,Contour Lines

FIGURE 3.1

Selection of Points Used to Estimate, Ele.vation at
Grid Node. (The number of points and the search

directions are not necessarily limited to those shown.)
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Il
By looking at Figure 3.1, it is easy to

see that interpolation of the node elevation by using the

pair of contour intersections provided by the horizontal

search lines is the method which would be used by an in-

dividual performing this task by hand. This algorithm

obviously cannot duplicate the performance of a human

being performing this task, but it comes close by using

many search directions, up to 8 including the 4 in Figure

3.1 and 4 more rotated it a 450 angle to those shown; and

by weighting each pair of contour intersections along

opposite search directions by distance or slope dependent

weighting function. The final estimate of each grid node

elevation is the weighted sum of each estimate obtained

by using a different pair of search directions.

The weighting functions can be chosen

either to emphasize the search directions which corres-

pond to short distances, or to emphasize large differ-

ences between intersected contours. In the example

shown, both choices of weighting functions would give the

highest influence to the horizontal search direction pdir

which is the correct choice. Weighting function choices

are discussed in Appendix E. Interpolation between con-

tour intercepts may be either linear or quadratic. In

13



the latter case, it is necessary to find two contour

intersections in each search direction rather than one.

Interpolation schemes are discussed in Appendix A

Figure 3.2 shows the more complicated case

using all 8 search directions. This figure indicates the

principle complexities encountered in developing this

algorithm; efficiently finding and using the contour in-

terceptions with search lines. This is done by first

searching along each contour for the search line inter-

cepts and then sorting the intercepts for each search

line so that they may be easily found starting at any

grid node.

In this initialization step, digitized

drain and ridge lines as well as lake boundaries may be

utilized in a manner similar to digitized contours.

Unlike contours and lake boundaries which have a single

elevation associated with every point, a drain or ridge

line has a different elevation at each point. Thus the

elevation at the intersection of a search line with one

of these auxiliary inputs must be computed by linear in-

terpolation bvetween digitized points.

3.3 ADJUSTMENT AND FIXING. After initialization

the grid adjustment step may be used to force the surface

to pass through given control points. The control points

14
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of the target matrix. The diagonal search
lines ate dashed to distinguish them from
grid lines. Grid nodes are shown as small
dots, and interpolation points (where search

lines intersect contours] are shown as large
dots.)
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include the intersections of grid lines with contours,

ridge and drain lines and lake boundaries. They may also

include spot elevations. The grid nodes within a user

chosen distance of the control points are fixed so that

subsequent processing will not change their values.

Also, all grid nodes interior to lake boundaries are

fixed at this time.

The adjustment step involves fitting a

surface of the form axy + bx + cy + d to the four grid

nodes surrounding a control point and then raising or

lowering the surface until it passes through the control

point. Evaluation of the surface at the grid nodes pro-

vides the new fixed values.

This step is primarily important in cases

in which it is desired to validate the algorithm by re-

contouring the output grid at levels matching those of

the input contour strings. The adjustment and fixing

guarantees that the contours corresponding to input con-

tour strings will not be significantly shifted anywhere

in the entire map.

DiSCUzSions with DMA personnel have indi-

cated that this is not a normal goal. Thus grid adjust-

ment may be a step the user will often wish to skip.

16



3.4 FILTERING. The final processing step involves

applying a convolution filter to the initial grid to gen-

erate a smoothly varying gridded surface. This will

eliminate much of the roughness of the grid which is

caused by using local operations to perform the initiali-

zation process. All nodes of the grid are allowed to

change values under this filtering process, except those

fixed because they were close to the input contours or

other data structures.

The convolution operator used in this step

is either a thirteen point bi-harmonic operator or a 5

point Laplacian operator. Filtering continues for a

specified number of cycles or until the fractional change

in grid values between cycles is below a set value.

These spatial filtering algorithms are the same ones used

in the grid smoothing operations discussed in Section 5

of this report. More information on their characteris-

tics and methods of terminating their operations are

available in that Section.

3.5 CONTOUR TO GRID TESTING. Testing of this algo-

rithm was carried out using the DMA supplied data as

described in Section 2. Evaluation of results must be

subjective since ground truth data does not 9 xist. Thus,

in this section as in those which follow, visual results

17



will be emphasized. Two different types of output are

presented: first, contour maps created from grids pro-

duced by CTOG which demonstrate an ability to replicate

the original contour inputs and to handle auxiliary in-

puts such as drains, ridges and lake boundaries; and

second, very small posted areas in which the grid node

values calculated can be judged against the raw data.

Figures 3.3 and 3.4 are contour maps pro-

duced from CTOG runs using the two test areas described

in Sections 2.0 and shown in Figures 2.1 and 2.2. One

pass of the bi-harmonic filter was applied to the 65x65

output grids in these runs. The effects of additional

filtering on these figures will be discussed in Section

5.0 of this report.

Nodes fixed by the adjustment step of CTOG

are indicated in Figures 3.3 and 3.4 by small x's. The

large area of fixed nodes in the lower left corner of

Figure 3.3 corresponds to the interior of a lake. All

grid nodes within the lake boundary are fixed to the

level on the lake boundary.

For both maps the match between the con-

toured CTOG output and corresponding input data is good.

However, the closures in the upper part of 3.3 did not

match the original. Part of the difference is attribut-

able to the contouring logic used to create the maps in

18
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this section. Post processing using one of the filtering

options would also improve these features (see Section

5).

Figures 3.5 and 3.6 show small subsections

of 3.3 and 3.4. The grid node positions are shown by the

+'a and their elevation values are posted. The lines re-

present the input contour strings and drain lines. Fixed

nodes are indicated by star shaped figures.

Figure 3.5 corresponds to part of the low-

er left corner of 3.3. In it can be seen the lake bound-

ary surrounding the dense pattern of fixed nodes all with

the same posted level of 4860. A few nodes outside of

the lake are also fixed during the adjustment step.

Figure 3.6 corresponds to an area in the

right center of 3.4. It provides a detailed view of the

way fixed nodes are clustered along input data. For

these figures all nodes closer than 1/2 a cell diagonal

to a control point are fixed. As defined in Section 3.3

control points include all points used to define the

input contours plus the crossing of grid rows and columns

by contour strings.
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4. GRID-TO-CONTOUR

4.1 OVERVIEW. Grid-to-contour (GTOC) is the name

used to identify a new DMA computer program which inter-

polates elevation contours from digital terrain models

(DTM). That is, the major input for the program is a DTM

while the output is a set of vectorized contours that can

be plotted on several of the graphic systems at DMA.

An immediate application of GTOC in DMA is

to analyze and verify DTM's produced by the contour-to-

grid (CTOG) program and other sources in DMA. Its long

term applications will probably be in map production us-

ing as source data the extensive library of DTM's being

assembled by DMA.

DMA has developed similar contour genera-

tion programs. They are confined to the mainframe com-

puting system and are used primarily for data verifica-

tion and evaluation. The new technology and design of

GTOC will enable DMA to use the program on many of the

mini-computer based systems currently online or planned

for DMA. Also, the quality of output suggests the pro-

gram will be useful in future map production plans for

DMA.
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A description of the logic and major algo-

rithms used in GTOC are provided in the following sec-

tions. Several test outputs based on DTM's produced by

CTOG are provided as examples of the program outputs.

Further testing and evaluation of GTOC is being performed

by ETL and DMA personnel.

4.2 BACKGROUND. The general contouring problem is

to establish all points (x,y) which satisfy the equation

E(x,y) -C = 0

where E represents the elevation as it varies with x and

y (easting and northing coordinates) and C is the contour

value.

Cartographers "solve" this equation using

a variety of tools, logic, and experience. Their tools

range from simple geometric dividers to complex analog

photogrammetry systems. The data they use may be a set

of widely spaced spot elevation data or continuous photo-

graphic images of the topography.

Various digital systems used by the gov-

ernment require elevation data in a form that is easy to

handle while maintaining high accuracy, nearly equivalent

to the analog images of E(x,y). This requirement is

satisfied by digital terrain models wh.ch are matrices of
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elevation values. The values correspond to points along

a series of equally spaced profiles over the x-y plane.

Points along the profiles are also equally spaced.

Although cartographers could apply their

classical contouring methods to the tabulated elevations

in a DTM, this is unrealistic because of the volume of

data and the rate at which DTM's can be produced. Hence

computer contouring is a reasonable alternative.

In its simpliest form, computer contouring

is a process of connecting dots. For example, imagine

that the DTM representing E(x,y) is a grid of elevations

where vertical grid lines correspond to adjacent profiles

of E(x,y) and horizontal lines connect values on adjacent

profiles. If a contour level lies between two DTM

values, then the crossing point is on the grid line con-

necting the values. Other dots can be positioned on grid

lines where this contour crosses. Finally, the contour

curve can be drawn by connecting the dots with short line

segments or curves. Of course, there is an order that

must be followed in connecting the dots. Figure 4.1

illustrates these simple steps for a small portion of a

DTM.
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The accuracy and acceptability of contours

produced by this simple process depend on several fac-

tors. These are

1. accuracy of the DTM values,

2. spacing between DTM values,

3. texture of the area covered by the

DTM,

4. procedure for computing dot locations,

and

5. procedures for connecting the dots.

Only Factors 4 and 5 are within the control of the con-

touring logic described above. It assumes that the DTM

data are accurate and properly spaced for the topography

it represents. Indeed, Factors 4 and 5 are the reasons

why computer contouring is not as simple as suggested in

the discussion above. There are a variety of techniques

for each. Several were investigated and the most effec-

tive combination implemented for DMA. These are discuss-

ed in the next sections.

4.3 CONTOURING METHODS. Two methods for implement-

ing contouring logic were tested. One was selected as

the more desirable and installed at DMA. Both are de-

scribed here.
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The first method, called the "cell-prior-

ity," was initially proposed to DMA, implemented, and

tested. Because of problems discussed below, it was re-

placed by the "curve-priority"M method which is discussed

in Section 4.3.2.

4.3.1 Cell-Priority Contouring. Cell priority con-

touring works as follows: the DTM grid lines define a

collection of grid cells, each bounded by adjacent

horizontal and vertical grid lines. There are elevation

values at the corner of each cell. Processing on the

cells starts at the upper left corner of the DTM and

steps down and across the area. The first cell's corner

values are selected and compared against all contour

values to be drawn. If a contour intersects the sides of

the cell, the dot locations are computed and stored with

the cell. If several curves pass through the cell, then

there will be a set of dots for each curve, each set

stored with the cell. once all curves through a cell are

stored, the next cell is retrieved and processed. This

process continues until all cells in the DTM have been

processed.

When the cell size at map scale is very

small, connecting the two dots that define a curve across

the cell might be acceptable. However, for lari- r cells,
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unrealistic and generally unacceptable polygonal shaping

resul ts. Consequently, an algorithm was designed to

compute intermediate dots along the contour wi~nin the

grid cells. By making the dots close enough, lines can

be used to smoothly connect the dots. The method for

computing intermediate dots is the same for cell- or

curve-priority contouring; hence, it is covered

separately in Section 4.3.4. It suffices to say that

when it is employed, the number of points representing

the curve can increase from a minimum of 2 to 30 or more

depending on the curve's complexity across the cell. All

of these points must he stored with the cell or displayed

immed iately.

Cell-priority contouring is very efficient

in some respects. once a cell has been processed, the

computer memory occupied by its corner values and contour

dots can be released. No processing on that cell will

occur again. Consequently, small portions of very large

DTM's can be loaded, processed, and forgotten. If neces-

sary, dot locations on each curve through a cell can be

stored on discs. Because of this, the method is very at-

tractive for use on mnini-computers with limited memory

and cheap disc storage. The mnethod is even more attrac-

tive if the curves can be displayed immediately and never
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stored. On a CRT graphics device, the output appears to

flow across the screen from left-to-right, filling the

screen with narrow vertical strips of the finished con-

tour plot. Since there are a variety of mini-computers

and raster type display devices at D~MA, it was reasonable

to pursue this method for contouring.

Problems develop when the curves must be

drawn by an incremental plotter, annotated, edited, or

adjusted. All are important operations at DMA. Each

problem is a consequence of the cell-by-cell processing.

Since points on) curves3 are not stored in

order along the curves (they are stored by cells), it was

necessary to link the segments togjether tor plotting or

for the other operations. Curve linking was accomplished

by processing each contour one-by-one. When an unpro-

cessed curve was located in a cell, the points were re-

trieved to start a curve string. When a curve passed to

an adjacent cell, the new cell's data were loaded, then

the points on the curve were extracted and added to the

string. This continued until all cells containing points

on the curve were loaded and added to the string. The

resulting "continuous" string of points along the curve

were available to plot, annotate with elevation values,

or for other operations.



Although curve linking appears to be

fairly simple, the implementation within mini-computer

constraints was difficult and not very satisfactory.

Data volume became a major problem. When curves are

defined by 2 points per cell and there is only one curve

per cell, the amount of curve data is usually smaller

than the original DTM data. However, when intermediate

points through cells are generated and when there are

multiple curves in a cell (two cases that must be ex-

pected), the curve data volume can rapidly exceed the

storage requirements for the original DTM.

Since curve complexity dictates the amount

of data along a curve, it is difficult to predict a pri-

ori how much space will be required to load data for each

curve. Consequently, a variety of data partitioning and

blocking schemes were tested. Since the amount of com-

puter memory was fairly restrictive, none of the schemes

were very satisfactory. Although linking was achieved,

it was not finalized because of the operator's expertise

required to set control parameters and its extensive use

of computer time and resources.

Since DM4A wanted the contouring program to

operate on a variety of systems, mostly mini-computer

based, and since the linking problem appeared to be ex-

tremely time consuming, the cell-priority method was set



aside. The curve-priority method which partially solves

those problems was developed instead.

4.3.2 Curve-Priority Contouring. This method re-

verses the processing priority on curves and cells.

Whereas the former method started with a cell and then

examined the cell's contents for all the contours, this

method starts with a contour and examines all the cells.

The processing starts with a contour level C, initially

the first level of interest. Then, a systematic search

of the cells is started to locate a cell containing the

curve. The search commences at the upper left corner of

the matrix and scans down and across. When a curve at

level C is detected, points on the curve through the cell

are computed as described in Section 4.3.4. Since the

initial cell shares an edge with a cell which also con-

tains the curve, it is possible to move left, right, up,

or down in a predictable manner from one cell to the next

along the path of the curve. Each time a new cell's ele-

vation values are retrieved from the matrix, points along

the curve are computed and added to a string representing

the contour.

Tracing the curve from cell-to-cell stops

when the last cell processed is on the edge of the matrix
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(contour exits on a side of the map) or when the next new

cell is the same as the initial cell ( the curve is closed

within the map).

After the curve-tracing stops, the next

curve (if any) at level C is sought. The searching

starts in the cell just beyond the one where the last

curve was initially detected, Searching continues until

another curve is located which means that the curve-fol-

lowing logic is evoked again or until the last grid cell

in the matrix is analyzed. The entire process repeats

for the next contour value or terminates if there are no

more contours.

To prevent the detection of a single curve

more than once, a logic matrix is constructed. The ma-

trix contains two "YES-NO" flags per grid cell represent-

ing the top and left sides of the cell area. Initially,

for each contour level. all flags are set to "NO". As a

contour is traced through a cell and found to cross the

top side, the top flag is changed to "YES". Similarly

the left side flag is changed to "YES" if it crosses the

left side of the cell. Therefore, all cell areas where

the curve intersects the top or left edges will be marked

as having been processed. Later when such a cell is
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checked by the curve detection algorithm, it will be

ignored so that the curve will not be retraced a second,

third, etc. times. A new curve will be started only if

the top or left side flags are "NO". Even if a contour

is traced through both the left side and top of a cell,

this logic does not prevent a second contour of the same

level from crossing the cell since it can be picked up in

some other cell and then eventually traced through this

one.

As the contour strings are generated, they

are transferred directly to disc storage for later pro-

cessing (display, editing, etc.). The strings are auto-

matically ordered by virtue of the tracing process.

Computer memory and data handling problems

are easier to handle with the curve-priority method.

Since the only data in memory is the DTM, it can easily

be partitioned into a number of sub-matrices, each one of

which will fit in memory. Contours within each sub-ma-

trix are generated and output to the disc. When the pro-

gram is operated on 16 bit mini-computers, there are ap-

proximately 32,000 locations available to store elevation

values. For a 901x901 DTM, 25 sub-matrices are produced,

5 across and 5 down the area covered by the DTM. Con-

tours are generated in order, top left to bottom right.
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Consequently, when plotted, they appear to be generated

in 5 vertical strips across the area.

4.3.3 CurveDrawing and Annotation. Contours gener-

ated by either of the two methods are represented by

strings of (x,y) points along the curves. They are

stored on discs for later drawing or input to other steps

such as editing, generalization, etc. The only operation

provided for under this effort was contour drawing.

The contour drawing algorithm is fairly

limited by DM4A standards. It was implemented only to

display and label the curves. More specialized annota-

tion of the contours is planned in future work.

Curves are drawn in the order they are

output by the contour generation program. Parameters

provided by the operator control spacing of labels along

curves and label size. Additional parameters are pro-

vided to select different size drawing pens or line

widths, provided the plotting device is properly

equipped.

4.3.4 Interpolating Contour Points. When the area of

a grid cell is very small at map scale, contours can

probably be drawn satisfactorily by connecting the points

on the cell sides with line segments. However, when the
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cells are fairly large, it will be necessary to interpo-

late intermediate points through the cell to produce

smooth and realistic contours. The techniques used to

locate points along a contour within a cell are described

briefly here. More details are provided in Appendix B.

To accommodate both requirements, i.e.,

defining curves by edge intersections (2 points) alone or

by multiple points across each cell, two levels of com-

plexity are required. Ideally the simpliest requirement

would be satisfied by Linear Fitting in which the contour

intersections with the cell edges are joined by a single

straight line. However, since some cells have more than

two crossings of a contour level with cell edges, a

further refinement is required to prevent ambiguities.

Thus for this simpliest case a pattern of four triangles

is created, each triangle defined by a cell side and the

center of the cell. The interpolation is in fact linear

over these triangles.

Non-Linear Fitting yields two points where

the curve intersects the cell edges plus one or more

intermediate points across the cell. When these are

closely spaced and connected by straight line segments,

the results appear to be a smooth curve through the

cell.
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Non-Linear Fitting is much more complex

and time-consuming since a local elevation model must be

constructed across the grid cell. This model is formu-

lated from 16 elevation values which are at the corners

of a 4x4 sub-matrix containing the grid cell at its cen-

ter. Figure B.3 in Appendix B illustrates the extraction

of the 4x4 matrix from the DTM.

Two algorithms, called the Iterative and

Stepping Methods, were developed to trace contours across

the local elevation models. The Iterative Method is used

most frequently while the Stepping Method is used only

when the Iterative Method fails.

The Iterative Method starts with the two

curve intersections with the cell sides. These are math-

ematically connected by a straight line segment. To

decide which additional points are reqluired, the line is

bisected to establish a reference point (x,y). Then a

vertical or horizontal line is constructed through (x,y)

and its intersection with the contour is computed. The

addition of the new point to the original two means the

contour can now be drawn with two connected line seg-

ments. If the distance from the reference point to the

new point is large relative to the cell's width, then the

two new line segments are bisected to develop 5 points
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along the curve. New line segments are added until the

distance from a reference to its new point is "small"M.

Then the curve may be drawn smoothly by connecting the

points in order with line segments. Typically, 3 to 5

points are generated; however,up to 50 could be generated

if necessary. The user influences the number of points

generated in each cell by defining the fraction of a cell

size used to decide whether the distance between the new

point and the reference point is "small".

The Iterative Method fails when the algo-

rithm cannot find a unique intersection with the horizon-

tal or vertical line through a reference point. For ex-

ample, if a curve makes a Figure "S" across a cell, then

a vertical line could intersect the contour three times.

The algorithm cannot decide which to accept. Similar

problems are encountered when one contour crosses all

four sides because a saddle exists. In these cases, the

Stepping Method is used.

The Stepping Method traces the contour by

taking very small steps along the curve. It starts at an

edge point on the curve and then computes elevation

values using the local model at the corners of sub-

cells. The curve' s intersection with the sub-cell grid
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lines is computed by inverse linear interpolation. Since

a curve enters and exits each sub-cell along its path, it

is necessary to compute local elevation values for only

those sub-cells. When the sub-cells are very small, the

algorithm can follow the most complex curve shapes across

the cell. Sub-cells may be as small as 1/256 the area of

a DTM cell. From 15 to 30 points per cell are generated

by this method.

The Stepping Method is more time-consuming

since the local elevation model is evaluated more times

and more points must be computed across the cell. It

does not have the freedom to compute only those points

necessary to adequately describe the contour. Conse-

quently, for efficiency it is used only when the faster

Iterative Method fails.

4.4 TESTING OF CONTOUR-TO-GRID ALGORITHMS. Testing

of contour-to-grid algorithms is difficult for two

reasons. First, results must usually be subjectively

evaluated due to the lack of accepted "ground truth".

Second, it is often difficult to isolate effects in cases

where "ground truth" does exist. A good example of this

latter problem could be created by the attempt to evalu-

ate the Grid-to-Contour program by matching the oL'tputs
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of t -t program with the original contour strings sup-

plied by DMA. Any differences could be attributed to

either the Grid-to-Contour program or the Contour-to-Grid

program which created the intermediate grid. There is no

convenient method to isolate those caused by the Grid-

to-Contour program alone.

Considering the above difficulties, it was

decided that testing would be rerformed with data from

several small test areas. These areas are made up of a

small number of cells with posted grid values. For each

area, the shape of contours passing through the cells

can be observed. The contours can be matched to the grid

node values and to the choice of intermediate grids over-

layed in each cell as is discussed in Section 4.3.4. The

result of this test procedure is described below. How-

ever, note that the contour maps provided in this report

represent output from the Grid-to-Contour program. Al-

though in individual cases they may be intended primarily

to demonstrate the results of the testing performed for

other parts of this contract, their visual satisfaction

and consistency provide added validity to the Grid-to-

Contour algorithms.

The first test area shown in Figures 4.2

to 4.5 are for small mountainous regions with many con-

tours through the grid cells. Grid values at each node
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are posted. In this case, the values at 5 of the nodes

correspond to contour levels. The four figures corre-

spond to 4 different intermediate grid choices: 2x2,

5x5, 9x9, and l7x17. As discussed in Appendix B the 2x2

overlay is a special case which uses linear interpolatior

over triangular subdivisions of the cell. For this case

there are obvious improvements to be seen in moving above

the simpliest 2x2 overlay. Further improvements are

difficult to detect.

The second set of data shows results for a

more difficult area 6. Results are shown in Figures 4.6

to 4.9. In this case, a small valley on the left side

attains its lowest value in the upper left hand corner.

The higher terrain to the right of the valley protrudes

into the valley in the lower left. Again, significant

improvement is observed in moving from a 2x2 overlay to

higher cases. For a 9x9 overlay straight line segments

in contours can still be observed, especially in the

lower right corner. For this particular terrain area a

17x17 overlay is required to produc;e an acceptable out-

put.

of course it is ir, areas with significant

terrain variation that any contouring algorithm could be

expected to perform well. Figures 4.10 to 4.,3 provide a

more rigorous test grid lifted out of test area 4. The
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grid is relatively flat with a valley deepening and

widening from left to right. The contour at the height

of 4850 presents particular difficulty to the algorithm.

For this case the two coarsest overlay grids supply unac-

ceptably straight and sharp shapes to this contour even

though the second level provides reasonable dimensions.

The third level still has some straight contour segments

while the highest level finally presents an acceptable

view.
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5.0 SURFACE SMOOTHING AND GENERALIZATION

5.1 OVERVIEW. The objective of this task is the

development and testing of algorithms for smoothing

gridded terrain data and for generalizing contours.

Smoothing may be defined as an area or spatial process

designed to modify the significance of certain types of

terrain features. Typically, smoothing is performed to

reduce local surface shaping while maintaining the re-

gional shape. Two major types of smoothing are imple-

mented and each offers a number of options in applica-

tion.

Contour generalization is the process of

modifying the detail or placement of contour lines to

achieve some display objective. The operation involves

many elements and is ultimately a very subjective pro-

cess. This task is concerned with only one element of

generalization, termed line simplification. This tech-

nique is used when detail in contour lines must be re-

duced to accommodate a scale reduction or to increase the

clarity of map features. There exist a number ol algo-

rithms for the simplification of lines which-operate by

processing the line vertices directly. However, this

task approaches the simplification of contour lines
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indirectly by tile controlled application of grid

smoothing prior to contour line generation.

5.2 GRID SMOOTHING. Two types of algorithms have

been implemented for smoothing: (1) iterative filtering

with a spatial convolution operator and (2) weighted

least squares filtering. Convolution-operator smoothing

is a recursive process whereby a small area operator is

moved through the grid, combining values from both the

previous pass and the current pass to compute a new value

at each grid location. Control parameters include type

of operator and number of smoothing passes. Two opera-

tors are available. These are a five-point (Laplacian)

operator and a thirteen-point (bi-harmonic) operator.

The two operators are illustrated in Figure 5.1.

The Laplacian operator has the relative

advantage of using only five grid values and thus requir-

ing significantly less computation. It also converges to

a final surface very rapidly. Disadvantages of this op-

erator are that the final grid values are restricted to

lie within the initial elevation limits of the input grid

and that the final grid has less than optimal smoothness

properties. By contrast the bi-harmonic operator is

57



1/4 -1 1/4

1/4

(a) Laplacian Operator

(b) Bi-harmonic Operator
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derived from a constraint of minimum curvature which

guarantees optimal smoothness (see Appendix C). However,

the larger size and slower convergence of this operator

introduces additional calculation expense.

The implementation scheme used for convo-

lution operators is the technique of successive over-re-

laxation (Reference 6). The chosen operator is passed

over the grid four times, upper-left to lower ri,3.t and

back, then upper-right to lower-left and back, to com-

plete one filter cycle. Both newly computed and previ-

ously computed values are used to calculate the new value

at the current grid location. The new value calculated

is related to the value previously calculated by the

equation

z11 j(n) all{k~k (n-1) + .MZ(l) ]+ (l.CAgj~Zj(n-l)

where: n is the iteration number,

z is the gridded value,

wk is the kth operator weight where the kth

location has recently been iterated,

wm is the mth operator weight where the mth

location is yet to oe iterated,

(jis an acceleration parameter.

59



Each pass of the convolution operator

flows grid information in the direction of operator move-

ment. To achieve zero net flow of the grid data, a four-

pass cycle is utilized for one full smoothing pass.

Weighted least squares smoothing is pro-

vided as a set of options that depends upon local dhata

only. Operator shape and weighting may be se3lected from

a menu of built-in options, or the user may completely

specify the shape and weighting to be used. The only

constraint is that the operator must fit within a 5-by-5

grid. The built-in filter shape options are shown in

Figure 5.2. A plane, which fits the grid nodes specified

by the operator shape in a weighted least square error

sense, is calculated as described in Appendix D. The

height of the plane at the location of the node to be

smoothed is used as the output value.

5.3 CONTOUR GENERALIZATION. Contour generalization

is used here in the restrictive sense of simplifying con-

tour lines. It can be described a~s reducing the amount

of detail represented by the contours. The typical ap-

proach to this problem operates on the vertices of the

contour lines directly, producing a reduced or modified

set of vertices which define a smoother or. less detailed
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option I Option 2

Option 3 option 4 Option 5

Option 6 option 7 option 6

Figure 5.2. Local Area Point Specifiers for
Least Square Filtering
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curve. There exist many algorithms of varying complexity

for defining the smoothing operation on vertices.

The contour lines resulting from a line

smoothing operation may be thought of as representing a

smoother surface. This suggests that application of a

grid smoothing technique to the surface model would pro-

duce similar contours. Simplifying the surface rather

than the lines can provide some advantages such as pro-

viding smoothing control more directly related to phys-

ical attributes, preservation of the meaning of contour

lines, and increased efficiency in the processing of

dense contours.

Any of the surface smoothing operators

previously described in this section can be applied for

the purpose of contour generalization although additional

control of the smoothing effect is necessary for specific

purposes. This control is provided in two forms, fixed

points and control surfaces. The accommodation of fixed

points during surface smoothing allows important features

to be preserved while relaxing constraints on the modifi-

cation of other features. Grid nodes which are identif-

ied as fixed points indicate that the smoothed output

value for that point is to be identical to the input

value. This control is specified in the grid generation
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II
process described in Section 3. The points which define

the contour lines input to the gridding process are con-

sidered to be highly accurate. When one of these points

or the intersection of a contour line with a grid line

occurs near a grid node, that node is marked as a fixed

point. The nearness criterion is usually defined as half

the diagonal of a grid cell.

The second method of constraining the sur-

face smoothing operation is through the use of control

surfaces. These surfaces represent upper and lower

bounds on the smoothed surface and are functions of the

original input surface. They are defined by their grid

values as follows:

U(x,y) ? S(x,y) > L(x,y)

where S(x,y) represents the smoothed surface and U(x,y)

and L(x,y) represent the upper and lower control surfaces

respectively defined as

U(x,y) = aU I(x,y) + bU

L(x,y) = aL I(x,y) + bL

where I(x,y) is the input surface, and the a's and b's

are constants chosen by the user.
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Note that the definition of the control

surfaces does not require symmetry about the input sur-

face. For example, peaks may be restricted while depres-

sions are allowed to fill in. The two types of smoothing

constraints are illustrated in Figure 5.3.

5.4 TESTING. Testing was performed using the DMA

provided data of the Mustang Mountains area in southern

Arizona. As discussed in Section 2 this data was pro-

vided in the form of contour strings and related drain

and ridge lines. Subsets of this area with different

characteristics were chosen as test areas. These subsets

were extracted and used as input to the Contour-to-Grid

program discussed in Section 3. The output of this pro-

gram is a 65x65 grid of elevation values. The smoothing

program accepts as input and produces as output, grids of

elevation data.

Facets of the program tested include all

major options of regular smoothing and constrained

smoothing including: (1) unconstrained bi-harmonic

smoothing, (2) unconstrained Laplacian smoothing, (3)

weighted least-squares smoothing, (4) constrained smooth-

ing using the bi-harmonic convolution filter with control

surfaces or fixed point constraints.
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U(x,y) - Upper Control Surface

II(x,y) - Input Surface

L(x,y) - Lower Control Surface
S(xy) - Smoothed Surface

(a)

--- S(x,y) - Smoothed Surface

i /Fixed Points

(x,y) - Input Surface

(b)

Figure 5.3. Two Methods to Constrain the Smoothing

(a) Control Surfaces
(b) Fixed Points
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The two subset areas of the Mustang Moun-

tain Area, which were picked for test of these algo-

rithms, illustrate two very different types of terrain.

The area denoted test area A appears relatively flat com-

pared to the mountainous area denoted test area B.

The root mean square (RMS) curvature ita-

tistic proved to be most useful in judging the smoothing

performance. For a DTM with elevation values zij, I rows

and J columns this statistic is defined as

I J
(Cij) 2/I'J

where

Cij = Zi+l,j Zi-l,j + Zi,j+l + Zi,j- 1 - 4Zij

Six contour maps are shown of test area A

in Figures 5.4 through 5.9 and of test area B in Figures

5.10 through 5.15. They are arranged in order of de-

creasing curvature. Each smoothing calculation used one

pass.

5.4.1 Smoothing Constrained by Fixed Points. With

both data sets smoothing constrained by fixed points pro-

duced only a small decrease in RMS curvature. This is

because the fixed points represent a large fraction of
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the whole grid: 27% and 57% for areas A and B respec-

tively.

Comparing both maps of the fixed point

constrained smoothing (Figures 5.5 and 5.11) with those

L the grids before smoothing (Figures 5.4 and 5.10)

shows only a slight difference. The solid contours (at

multiples of 25) remain unchanged since they are in re-

gions with all fixed points. This is because they follow

the original contour data provided by DMA. On the other

hand the intermediate contours (dashed) are smoothed

somewhat because these are away from the fixed points.

It appears that fixed point constraints are not useful

when the number of fixed points is so large.

5.4.2 Least Squares Smoothing. For the least squares

smoothing, option 4 was chosen for the shape, and both

weighting functions were tried. Table 5.1 gives the re-

sulting RMS curvature for both test areas. The sharp

weighting gives almost the entire weight to the central

point and produces almost no smoothing. On the other

hand, the smooth weighting produces some grid averaging

resulting in reduced RMS curvrature. The contour maps of

the two smooth weighting cases are shown in Figures 5.6

and 5.13 They represent a nice compromise between

smoothness and detail.
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Table 5.1

Test Area Filter Weighting RMS Curvature

A None ---- 4.124

A Least Squares Sharp 4.066

A Least Squares Smooth 1.979

B None 13.729

B Least Squares Sharp 13.506

B Least Squares Smooth 5.357

5.4.3 Bi-harmonic Smoothing Constrained by Control

Surfaces. In this calculation the amount of smoothing

produced by the bi-harmonic filter is limited by the

control surfaces. For all such calculations shown in

this report, the control surfaces were set a constant

distance above and below the pre-smoothed surface by

choosing the constants

aU aL = 1.0

bU = +b

bL -b.

Both test data sets were smoothed with many different

values of b. Figure 5.16 shows the resulting RMS curva-

ture vs. b. As b increases, the RMS curvature decreases

until b=8 for area A and b=18 for area B, after which no

further decrease in curvature is seen. For larger values
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of b the control surtaces no longer have any effect and

the result is the same as for an unconstrained bi-harmon-

ic filter. One constrained bi-harmonic smoothing calcu-

lation of each test area was chosen for contouring. Fig-

ure 5.7 shows the map of area A for b=3.0 and Figure 5.12

shows the map of area B for b=5.0. When compared to the

before smoothing maps, these maps show the general ter-

rain features much more clearly.

5.4.4 Bi-harmonic Smoothing. When not constrained,

the bi-harmonic filter produces a large decrease in RMS

curvature, yet the important terrain features are pre-

served. Figures 5.8 and 5.14 show the appropriate con-

tour maps. This filter acts quite fast for three rea-

sons: (I) It is a recursive filter acting on both old and

new grid values, (2) Each pass through the filter in fact

represents four sub-passes (necessary to remove any phase

shift), and (3) The acceleration parameter (1.3) was

chosen for high speed.

5.4.5 Laplacian SmoothinA. Use of the Laplacian

smoothing filter, Figures 5.9 and 5.15 results _n a much

more drastic smoothing effect for one pass. The terrain

details are thoroughly washed out, and only the general

trends remain. Since the Laplacian operator is smaller
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than the bi-harmonic operator, it requires less computa-

tion, and it may be preferred for its great amount of

smoo hing.

5.5 CUTOFF OF THE BI-HARMONIC OPERATOR. The bi-

harmonic smoothing filter is often iterated through

several passes. This may become very time consuming for

large grid size. Four statistics were examined to find a

criterion to limit the number of passes. The statistics

are:

1) RMS Curvature

2) Change in RMS Curvature

3) Standard Deviation

4) AZ max (i.e. largest change in grid

value)

5) AZ max/Range (i.e.AZ divided by grid

maximum-grid minimum)

Table 5.2 and 5.3 tabulate these five quantities for

areas A and B respectively. These are the results after

each fourth subpass, since it is always required to fil-

ter in multiples of four subpasses to avoid introducing

distortions. See Appendix C.

For all four constrained cases, most of

the change occurred during the first pass. The standard
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Table 5.2.

Statistics for Bi-Harmonic Smoothing of Area A

I I IChangeinI I I I
R1 1 4S R S Standard A z max

Constraint Pass ICurvaturel Curvature Deviation A ma Range
II I

0 4.124 25.001-----------

Fixed 1 2.970 28.0% 25.04 2.678 .01847

Point 2 2.924 1.5% 25.07 .787 .00559

3 2.914 .3% 25.08 .392 .00280

4 2.909 .2% 25.10 .278 .00199

5 2.907 .1% 25.11 .226 .00162

6 2.905 .1% 25.12 .183 .00131

I I i '-I

0 4.124 25.00 ----

Control 1 1.971 52.2% 24.93 1.215 .00838

Surface 2 1.921 2.5% 24.93 .383 .00264

-5.0 3 1.914 .4% 24.92 .271 .00187

4 1.911 .2% 24.92 .144 .00099

5 1.909 .1% 24.91 .106 .00073

6 1.908 .1% 24.90 .091 .00063

0 4.124 25.00 -----

None 1 1.198 71.0% 24.87 2.738 .01888

2 1 873 27.1% 24.82 1.095 .00768

3 .761 12.8% 24.79 .654 .00463

4 .693 8.9% 24.76 .498 .00355

5 .645 6.9% 24.73 .398 .00285

6 .609 5.6% 24.71 .325 .00233
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Table 5.3.

Statistics for Bi-Harmonic Smoothing of Area B

Change in

m s m4S Standard I ma

Constraint Pass Curvature Curvature Deviation j Z max Range

0 13.729 161.04- ----------

Fixed 1 13.171 4.1% 161.15 7.414 .00925

Point 2 13.151 0.2% 161.14 1.459 .00182

3 13.147 0.0% 161.13 .563 .00070

4 13.146 0.0% 161.12 .334 .00042

5 13.145 0.0% 161.11 .248 j.00031
6 13.145 0.0% 161.11 .188 .00023

0 13.729 161.04 -
Control 1 7.329 46.6% 161.02 2.309 .00288

Surface 2 7.286 0.6% 161.03 .577 .00072

b-5.0 3 7.280 0.1% 161.04 .315 .00039

4 7.278 0.0% 161.05 .253 .00032

5 7.277 0.0% 161.06 .226 .00028

6 7.276 0.0% 161.07 .195 .00024

0 13.729 161.04 -----

None 1 3.526 74.3% 160.98 9.641 .01203

2 2.371 32.8% 160.93 2.354 .00294

3 2.110 11.0% 160.89 1.422 .0017

4 1.968 6.7% 160.86 1.052 .00131

5 1.864 5.3% 160.84 .848 .00106

6 1.782 4.4% 160.81 .715 .00089
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deviaLiun measurement changes only slightly and does not

decrease uniformly, making it useless as A cutoff crite-

rion. The change in RMS curvature and the AZ parameters

indicate that two or, at most, three passes may be use-

f ul. The RMS curvature seems to be the most relevant

measure since this is the value which the f ilter seeks to

minimize. Selecting a cutoff value between .5 percent

and 2 percent would suffice for all constrained cases

tabulated. Using the much less costly calculation of AZ

Max/Range, a cutoff value of approximately .003 would

give similar results.

The unconstrained cases are interesting

since they may indicate how the filter is behaving in the

free areas of the constrained grid. Again the standard

deviation is useless. The change in RMS curvature would

provide the best control and appears consistent for the

two cases. Although the nAZ Max/Range is decreasing

steadily, a fixed cutoff value would give a very differ-

ent performance for the two unconstrained cases. Over-

all, the change in RMS curvature seems to provide the

best indicator of filter effects. However, one caution

is necessary in the use of this measure. Since the

calculation is an average of curvature over the entire



grid, significant changes in a small area might be

masked. At the other extreme the AZ Max/Range criterion

measures the change at only one grid node. For the

constrained cases, the behavior of these two indicators

seems to correspond well enough to suggest that either

would provide adequate results. Since the AZ Max/Range

requires much less computation, it is recommended for use

as the filter cutoff criterion.
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6. RESAMPLING STUDY

6.1 OVERVIEW. This part of this study compares the

performance of two interpolation algorithms in the resam-

pling of digitized terrain models. The algorithms inves-

tigated are the local bicubic surface fitting method de-

veloped by Akima (Reference 3 and 4) and the ZYCOR para-

bolic adaption to the Jancaitis method (Reference 2).

Detailed descriptions of these algorithms appear in Ap-

pendices F and G. Comparison between the two methods was

based primarily on the statistical performance of the

algorithms in resampling terrain data provided by DMA

representing the Mustang Mountain area in southern Ari-

zona and visual inspection of results. Also compared are

the spatial frequency characteristics of the algorithms,

their response to Lipulses, and the amount ot time re-

quired by each to perform interpolations.

Four basic conclusions are available from

this study:

I) The two algorithms provide very simi-

lar performance in resampling the test

terrain provided by DMA. While local

differences where observable in the
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resampling of individual DTMs, these

did not point to overall patterns

which would lead to choosing either

algorithm as generally superior to the

other.

2) The Jancaitis algorithm runs signifi-

cantly faster than the Akima algorithm

as implemented. Based on test cases

with input grids generated by random

number routines and running on ZYCOR's

VAX 11/750, the Jaricaitis algorithm

out-performed the Akima routine at it

rate of 2.5 to 1.

3) The Akima algorithm can perform a

transition into a terrain with zero

curvature without the overshoot pro-

blem produced in the use of the

Jancaitis algorithm. A study of the

response of both algorithms to a sin-

gle impulse provides a quantification

of this difference.

4) A comparison of the power spectra of

the data grids and that of grids pro-

duced by resampling at the same den-

sity using the two interpolation
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algorithms showed a small advantage

for the Jancaitis method as measured

by the attenuation of high frequencies.

All of the above points are elaborated on the following

sections.

6.2 RESAMPLING OF DMA DATA. As discussed in Section

2, DMA/ETL provided ZYCOR with digitized contour data for

7.5 minute x 7.5 minute area in southern Arizona around

Mustang Mountain near Fort Huachuca. This data was parti-

tioned by ZYCOR into a iiumber of smaller test areas repre-

senting various terrain types and the partitioned areas

were then gridded to provide test DTMs. Table 6.1 gives

the grid sizes and gridding increments in both coordinates

for the four test areas considered in this section. The

numbering scheme which runs 1,4,5, and 6 reflects the fact

that certain areas originally chosen for testing were

eventually disgarded due to difficulties in running CTOG

on the data or problems with the data itself. These prob-

lems have been identified as mistakes made in the use of a

program to partition the data sels.

In order to provide statistical measures

of accuracy it was desired to resample the grids describ-

ed above at the actual grid node locations. To do this
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Table 6. 1.
Test Grids Used in Resampling Study

Test Area 1

Grid Size: 48 x 48
Gridding increments: 78m x 92m

Test Area 4

Grid Size: 48 x 48
Gridding Increments: 52m x 61m

*rest Area 5

Grid Size: 64 x 64
Gridding Increments: 58m x 68m

Test Area 6

Grid Size: 48 x 48
Gridding Increments: 58m x 68m
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each grid node was assumed to be the center point of a

cell in a thinned grid created by the ignoring of every

other row and column of the original including the row

and column which define the grid node. Figure 6.1 shows

this sampling scheme. In order to avoid possible non-

general effects of using these algorithms to interpolate

near edges of a grid, resampling was restricted to take

place in the center portion of a grid ignoring the five

rows and columns along each border.

Considering the fact that the center of a

cell may not be the point at which the most significant

differences between the two resampling algorithms may be

observable (see below, Section 6.4), a second method was

developed which involved retaining as data only every

third row and column of the input grid as data. This

resulted in 12 possible interpolation locations relative

to a grid cell. However, results obtained with this

method in no way modified or added to results obtained in

using the method described above, so this approach will

not be pursued further in this report.

During the running of the resampling pro-

gram the difference between the interpolated value at

each grid node and the actual value was computed. The

errors were used to compute three statistical measures of
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performance by which the two interpolation algorithms

could be compared: the square root of the average of the

squared errors (RMS), the average of the absolute trrors,

and the error with the largest absolute magnitude. The

interpolated grids were output in a formatted form so

that they could be contoured and plotted for comparison

against the original data. Furthermore, the difference

grids between the interpolated and original grids were

output for both the Akima and Janc-aitis algorithms. Also

output were the norm of the gradient and the absolute

curvature for each node of the input grid.

For grid node position i,j the absolute

value of the curvature is deterred by

Zji ,,j + Z i-lj + Zi,j+l + zl,j - 4 Zij

and the norm of the gradient by

Zi+l, j - Zi-l,j 2 + KZiJ+1- zj 1  2

The process of throwing out rows and col-

umns during the resampling forced our attention to the

spatial frequency characteristics of the data. If a sig-

nificant portion of the inherent frequencies of the input

grid were too high, then no possible interpolation :theme
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which involved ignoring some of the input data was going

to provide reasonable results. We therefore determined

to eliminate these high frequency terms from the data.

Since the test scheme involved throwing out every other

row and column, it was judged that the high frequency

terms needing elimination were those above fs/2 where fs

was the foldover frequency implied by the sampling rate

of the original grid. A Digital Frequency Transform

(DFT) was provided to test and smooth the input data.

The transform used was based on a well-known algorithm

tor carrying out Fast Fourier Transforms(FFT) (Reference

5.) For each input grid a DFT was performed on each row.

High frequency terms which would be aliased by the sampl-

ing scheme were set to zero. The spectrum for each row

was then inverse transformed back to the spatial domain.

This procedure was then repeated on the columns. This

process produced a smoother grid with the most noticeable

difference being radical changes around the edges of the

grid. These differences were attributable to the cycli-

cal nature of performing frequency analysis with sampled

data which leads some of the high frequency components of

the spectrum to result from difference.; between the end

of each row and column of the grids. By throwing out

high frequencies these ends were forceably adjusted to

fit each other.
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A summary of the results of these test

efforts is contained in Table 6.2. Contour plots corre-

sponding to these tables are contained in Figur2s 6.2

through 6.33. For each test area, eight grids are shown.

These contain:

1) the original test area,

2) the DFT smoothed test area,

3) the smoothed test area resampled

using the Akima algorithm,

4) the smoothed test area resampled us-

ing the Jancaitis algorithm,

5) an absolute error grid for the Akima

algorithm,

6) an absolute error grid for the

Jancaitis algorithm,

7) a contoured grid of the norm of the

smoothed grid gradient, and

8) a contour grid of the absolute curva-

ture of the smoothed grid.

The number contained in Table 6.2 shows

that little quantitative difference was produced from

this testing procedure. In all but one case the maximum

difference in the error statistics produced by the two

methods was less than 10 percent. In most cases they
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Table 6.2
Grid Resampling Statistics

Test Area 1

ERRORS AKIMA JANCAITIS
RMS +3.96 3.67
AVR 2.44 2.30
PEAK -35.00 -33.9

Test Area 4

ERRORS AKIMA JANCAITIS

RMS 4.89 4.67
AVR 3.40 3.23
PEAK -31.0 -33.4

Test Area 5

ERRORS AKIMA JANCAITIS
RMS 10.3 10.5
AVR 7.1 7.16
PEAK -52.1 -78.4

Test Area 6

ERRORS AKIMA JANCAITIS
RMS 17.6 17.8
AVR 13.6 13.5
PEAK -79. -81.0
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Figure 6.11. DFT Smoothed Test Area 425 Foot Contours
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were less than 5 percent. The one example of an error

greater than 10 percent is a measurement of peak error

for which the largest variations are to be expected.

Visual differences between the results for the two

algorithms were also very small. Without careful

observation of the interpolated grids or the generated

error grids, it is not easy to distinguish differences

between the two algorithms.

At first it may seem surprising that two

algorithms which are so different in derivation would not

produce more noticeably different results. However,

although there are great differences in implementation of

the two algorithms, there are certain basic conditions

which make the similarity of results reasonable. These

are:

1) Both algorithms are local operators.

2) The interpolated surface generated by

both algorithms must mat:h the origi-

nal grid at corners.

3) The transitions between cells for

both algorithms must be smooth as

measured by first derivatives.

4) The larger input area used in carry-

ing out the Akima algorithm is
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balanced against the higher degree

polynomial used in the Jancaitis

algorithm.

6.3 TIMING CONSIDERATIONS. The relatively small

performance differences observed between these two algo-

rithms lead naturally to attempting to differentiate

between them on the basis of their speed of execution.

To this end, two small test programs were written which

generated test grids by use of a random number generator

and then called the individual interpolation algorithms

repeatedly. The Jancaitis algorithm represents code

entirely generated by ZYCOR and optimized to provide

rapid computations through re-use of interpolation

weights. The Akima algorithm used in these tests was

based on published code. In order to make the comparison

between the two reasonable, the Akima code was modified

to make it a function instead of a subroutine and it was

made applicable only to unit grids. This last modifica-

tion removed multiple divisions existing in the original

code which are not required in grids with identical di-

mensions in both directions.

In order to prevent the exact form of the

grid generated by the random number generator from af-

fecting the results, the tests were run in sections of
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100 interpolations with a new grid being created after

each 100 interpolations and the original seed number for

the random number generator being created by a built in

VAX function which returns clock time to a calling pro-

gram.

A run of 5000 total interpolations re-

quired 21.6 CPU seconds on ZYCOR's VAX 11/750 with the

Akima algorithm and 8.18 CPU seconds with the Jancaitis

algorithm. The advantage of the Jancaitis algorithm is

to be expected from a comparison of the number of float-

ing point operations required by the two algorithms. The

Jancaitis subroutine uses 56 floating multiplications and

divisions and 64 floating point additions while the Akima

algorithms uses 78 multiplications and 139 divisions. A

hardware floating point accelerator, not available for

the VAX 11/750 at the time of these tests, might reduce

the ratio of run times by a small amount.

It should be noted that much of the extra

time required by the Akima algorithm is used in computing

the required partial derivatives. In applications where

a DTM is being sampled at a rate at least as fine as its

own grid and in which the interpolation points can be

ordered much time could be saved by saving and reusing

those partial derivatives. This is discussed further in

Appendix B.
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6.4 TRANSITION INTO FLAT TERRAIN. The Akima algo-

rithm can move from rough terrain into flat terrain with-

out overshoot. This is an advantage not displayed by the

Jancaitis algorithm. Figure 6.34 and the following dis-

cussion quantify this difference. The figure shows the

result of applying the two algorithms to a profile of a

grid consisting of O's except for a single isolated grid

value of height D (i.e. a D unit impulse). The curved

surfaces represent the values produced using the two

algorithms to interpolatc to all intermediate points

between the grid nodes along the profile. The polynomial

function defining the surface between each pair of nodes

is also indicated.

The top part of the figure shows that the

Akima algorithm fits a smooth curve out to the first 0

grid node and then is exactly zero from then on. The

first derivative of the interpolation polynomial is 0 at

the top of the impulse and at the grid nodes on either

side of it. This rapid pickup of the flat terrain is due

to the intelligent way the weights are applied to the

pair of different equations used to estimate the slope at

individual nodes (see Appendix B). The fact that the

surface around node 2 is flat with 0 curvature, implies

that no weight is applied to the difference between grid
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values at locations 0 and I and that full weight is ap-

plied to the 0 difference between grid nodes 1 and 2.

In the lower part of the figure we see

that the Jancaitis algorithm fits a smooth curve out to

the first 0 grid node and then dips below the 0 level to

achieve a minimum value of -1 D at 1 + I/V .
12

The slope of the interpolation surface at grid location 1

is -d/2. The Jancaitis algorithm produces overshoot

throughout this interval.

This difference between the two algorithms

will repeat in a slightly modified form for any transi-

tion from a rough part of a grid into one with zero cur-

vature.

6.5 FREQUENCY POWER SPECTRUM STUDY. In order to

focus on frequency questions without regard to aliasing,

etc., it was determined to do more tests by resampling

the grids at the center of each cell using both algo-

rithms. The result was a resampled version of the input

grid for which any lost information would be attributable

only to the interpolation schemes themselves.

Power spectra for the original grids and

the grids prcduced by the interpolation methods were com-

puted and compared. To compute the spectra, the follow-

ing steps were followed:
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1) Each individual row and column was

normalized so that its mean was 0 and

its standard deviation was I. This

£tep was intended to prevent a few

rows or columns from dominating the

final results.

2) Each row and column was tapered using

a Hamming window to reduce sidelobes

created by taking a finite sample of

terrain data and by the cyclical na-

ture of a DFT.

3) A Digital Frequency Transform of each

row and column was computed and the

in-phase and quadrature terms squared

and added to produce a power spectrum

for the row or column.

4) The power spectra for all rows and

columns were added to provide an com-

bined power spectrum for the entire

grid.

Figures 6.35 through 6.42 show the resam-

pled grids produced for this part of the study. Tables

6.3 to 6.6 show the power spectra of the original sur-

face, the Akima resampled surface, the Jancaitis resam-

pled surface, and the ratio's of the Akima and Jancaitis
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Table 6 .3

Power Spectrum Test Results for Test Area 4

Length of Power Spectrum 20

FOWFR SF'ECTRUh RESULTS

N RAW DATA G1ID AKIMIA GRID JANCAITIS GRID A;R J/R

1 1510.400 1520.400 1512.700 1.007 1.00?
2 5719.900 5873.200 5847.800 1.027 1.022
3 2217.400 2347.000 2328.300 1.058 1.050
4 1007.300 1015,500 1029.500 1.008 1.022
5 730.570 755.010 772.9.0 1.033 1,058
6 892.560 961.800 967.510 1.078 1.084
7 568.310 580.110 592.2"20 1.021 1.04?
8 389.680 341.440 365.180 0.876 0,93?
9 367.840 286.350 312.61,0 0.778 0.850
10 210.180 159.700 175,130 0.760 0.833

11 125.020 81.810 88.925 0,654 0.711
12 101.750 54,157 58.452 0.532 0.574
13 84.692 37.-27 40.376 0.443 0.477
14 75.265 21,306 24,171 0.283 0,321
15 56.157 11.685 13.194 0.208 0.23,
16 45.290 8.875 9.203 0.196 0.203
17 50.534 6.193 6.05? 0.123 0.120
18 42,225 3.407 2.740 0.081 0.065
19 30.667 2.561 1.441 0.084 0.047

20 27.947 2.203 0.918 0.079 0.033
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Table 6.4

Power Spectrum Test Results for Test Area 1

Length of Power Spectrum = 28

POWER SPECTRUM RESULTS

N RAW DATA GRID AKIMA URID JANCAITIS GRID A/R J/R

1 165?.100 1413.500 1441.900 0.874 0,873
17232.000 15807.000 15758.000 0.917 0.914

3 3709.600 3949.400 3942.000 1.065 1.063
4 1842.600 1958.000 1966.100 1.063 1.067
5 809.290 820.380 825.700 1.014 1.020
6 350.730 337.?80 341.060 0.962 0.972
7 292.650 276.810 282.790 0.946 0.966
8 149.100 123.010 128.310 0.825 0.861
9 187.520 160.980 168.990 0.858 0.901

10 145.840 131.450 137.770 0.901 0.945
11 99.788 75.131 79.783 0.753 0.800
12 131.160 117.150 125.550 0.893 0.957
13 137.440 110.360 118.680 0.803 0.864
14 71.267 49.094 54.555 0.689 06766
15 '3.821 30.272 34,120 0.562 0.634
16 58.667 32.658 36.655 0.557 0.625
17 31.472 11.534 16.620 0.462 0.528
18 21.299 8.469 9.301 0.398 0.437
19 22.682 7,463 7.624 0.329 0.336
20 34.837 10.274 11,979 0.295 0.344
.1 76.82' 6.307 7.840 0.235 06292

17.669 3.167 3.6H9 0.179 0.209
23 19.370 4.142 4.719 0.214 0.244
24 14.387 1.988 2,.20 0.138 0.153
25 14.755 1.826 1.640 0.124 0.111
26 15.651 1.141 1.244 0.073 0.079
27 14.501 1.343 1.123 0.093 0.077
28 15.039 1.264 0,872 0.084 0.058
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Table 6.5

Power Spectrum Test Results for Test Area 5
Length of Power Spectrum = 28

POWER SPECTRUM RESULTS

N RAW DATA GRID AKIMA GRID JANCAITIS GRID A/R J/R

1 7080.500 7050.100 7009.900 0.996 0.990

2 20319.000 20441.000 20341.000 1.006 1.001

3 4522.800 4870.200 4765.800 1.07/ 1,054
4 2261.700 2577.100 2503.:200 1.139 1.107
5 1136.800 1216.400 1195.400 1.070 1.052

6 527.420 532.280 52:' 700 1.009 0.991
7 437.930 462.600 458.150 I.09,6 1.046
8 575,700 600.240 600.100 1.043 1,042
9 554.290 615.850 613.100 1.111 1,106

10 350.980 363.050 361.020 1.034 1,029
11 189.790 178.820 182.180 0.94? 0.960
12 228.470 197.560 212.410 0.865 0.930
13 318.950 264.740 284.830 0.830 0.893
14 275.S30 222.240 236.660 0.807 0.859
15 177.490 135.370 145.130 0.763 0.818
16 124.400 86.062 92.880 0.692 0.747
17 99.102 47.685 52.830 0.481 0.533
18 89.793 34.480 38.907 0.384 0.433
19 81."2 25.381 28.207 0.311 0.346
20 73.359 23.128 216. 33 0.315 0.358
21 71.904 19.441 21.201 0.270 0.295
22 62.127 10.507 12.148 0.169 0.196
23 40.334 6.830 6.937 0,169 0.172
24 35.460 5.324 4.905 0.150 0,138

45.162 4.307 4.382 0.099 0.097
26 37.864 3.591 2.559 0.095 0.068
27 35.006 3.233 1.753 0.09: 0.050
28 39.535 3.407 1.670 0,086 0.042
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Table 6.6

Power Spectrum Test Results for Test Area 6
Length of Power Spectrum 20

F'OWER SFECIRUM RESULTS

N RAW VATA GRID AKIMA GRIO JANIIIIS GRID A/R J/R
1 1341.900 147e,900 14y.) 00 1.101 1.102 5788.300 J828.600 5831.200 1.007 1.0073 2080.900 2078.400 2081.YoO 0.999 1.0004 604,760 576.350 577.330 0.950 0.9515 281.980 265.850 269.220 0.943 0.9556 117.930 107.410 109.870 0.911 0.9327 52.993 48.350 48.795 0.91? 0.9?18 61.427 55.639 'v,665 0.864 0.8809 34.921 27.130 7.585 0.777 0.79010 20.382 16.710 17.411 0.820 0.85411 13.938 8.854 8,991 0.635 0.64512 13.131 7.649 7.864 O.582 0.59913 7.206 3.915 4,067 0.543 0.56414 6.066 3.227 3.094 0.532 0.51015 5.928 2.4?3 2.308 0.409 0.38916 4.292 2.126 1,958 0.495 0.45617 5.117 1.t 2 1.619 0,319 0.31618 3.895 1.555 1.319 0.399 0.33919 3.568 1.217 .135 0.341 0.31820 3.925 1.126 1.072 0.287 0.273
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power spectrums to the original surface power spectrum.

The resampling and spectra are computed over the regions

for which the resampling with thrown-away rows and col-

umns were performed as described in Section 6.2 above.

Thus the resulting grids are 54 x 54 and 38 x 38 and the

information-containing portions of the (even) power spec-

tra out to the foldover frequencies are of lengths 28 and

20. When studying these spectra, a useful and simple

rule is that a given row N corresponds to a spatial fre-

quency of (N-I)/M cycles per row or column where M is

either 54 or 38. Thus, for example, the numbers 28 and

20 correspond respectively to (28-1)/54 and (20-1)/38

cycles per row or column or exactly the foldover fre-

quency ratio of 1 cycle to 2 samples.

Both algorithms showed increased energy at

the lower frequencies. The Jancaitis algorithm seems to

do a little better at retaining attenuated frequencies,

those for which there is less power in resamp]ed grids

than in the raw data grids. This advantage is always

less than 10 percent and does not translate itself into

noticeably better performance with regard to visual exam-

ination of the resampled grids. Interestingly enough, in

three cases the Akima algorithm does significantly better

at the very highest frequencies around the foldover

point.
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6.6 FINAL CONCLUSIONS AND RECOMMENDATIONS OF RESAM-

PLING STUDY. The two algorithms give roughly the same

results in performing resampling over the data sets

provided. Measured by visual results and by overall

statistics there was no way to pick a best algorithm. In

terms of frequency characteristics the Jancaitis

algorithm seemed to perform quantitatively better, but

this did not appear to have noticeable visual impact.

Possibly in other data with a higher frequency content

this would have been more apparent. In dealing with

overshoot the Akima algorithm is much superior in certain

situations. In terms of computational requirement the

Jancaitis algorithm performed significantly faster as

implemented.

Thus it would seem that the question is

one of trading the superior speed of the Jancaitis

algorithm against the transition properties of the Akima

algorithm. Unless it is possible by skillful programming

or data handling to overcome the 2.5 to 1 advantage of

the Jancaitis algorithm, or unless the overshoot problem

is too serious and too difficult to deal with in other

ways, it would seem that the Jancaitis algorithm provides

the better choice.
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1 CONTOUR-TO-GRID. The Contour-to-Crid algorithm

(CTOG) has been implemented for use at ETL and DMA in a

research and testing environment. Evaluating the grids

produced by CTOG is difficult. Examining individual grid

values is time-consuming and reveals only gross errors.

Contour lines generated from the grid can easily be com-

pared to contour line input, but this introduces an un-

certainty of the source of an error and provides little

information about the value of the grid elsewhere. How-

ever, given these constraints, the results from the tests

using small subsets of the supplied data indicate that

the output grids correspond well to the input contour

strings, ridge and drain lines, and lake boundaries.

A few areas in the test case contours show

broken contours, extraneous closures, and small bumps.

These problems are associated with small flat regions

where all grid elevations are exactly equal to a contour

level. These result from the coarseness of the digitiz-

ing increment relative to feature size in the input

data. It is recommended that scan step size be smaller

than one-half the size of the smallest feature that is

expected to be reconstructed and the CTOG gridding incLe-

ment be approximately equal to this smallest feature

size. This guideline will result in a very large number
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of points to represent the contours, which suggests that

controlled thinning and perhaps smoothing the input data

would be advised. This step would increase processing

speed dramatically with little or no loss of accuracy.

7.2 GRID-TO-CONTOUR. The Grid-to-Contour algorithm

(GTOC) has also been implemented for use at ETL and DMA.

The validity of this algorithm is only slightly more evi-

dent than for CTOG. Although some verification of con-

tours from visual inspection of grid values can be accom-

plished, subtle interpolation eccentricities cannot

easily be detected. Comparison of contours input to CTOG

vith those output from GTOC can provide some assurance,

and in most parts of the test areas the agreement is

high. The contour algorithm has some difficulty with

flat areas of height equal to the contour level. The

algorithm currently stops drawing when the contour enters

a cell for which the contour path is undefined. By digi-

tizing at an appropriate step size for the features

represented, many of the problem areas will be elimi-

nated. For those remaining, a possible solution

would be to choose a standard resolution for the ambigu-

ity, such as alwajs contouring slightly above a flat area

at the contour level.
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7.3 SURF'ACE SMOOTHING AND CONTOUR GENERALIZATION.

Two different types of surface smoothing algorithms have

been implemented and graphic results are shown for

several variations of each type. Contour generalization

is provided by the use of these smoothing techniques with

constraints on the amount and location of smoothing per-

formed. The tests indicate that this approach to contour

simplification provides results similar to direct line

simplification with some advantages. For areas with

dense contours the amount of computation could be consid-

erably less for surface smoothing than for some types of

line smoothing. The process is also more easily con-

trolled to specifications normally used for contour line

accuracy and it does not allow smoothing which violates

the meaning of the contour (allowing contours to cross

for example).

Several measures of filter convergence for

use with the bi-harmonic filter have been examined. The

criterion of percent change in surface curvature seems to

best represent the goal of minimizing curvature within

the constraints of the input data, although the less

costly measure of AZ Max/Range would perform well for the

cases tested.
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7.4 GRID RESAMPLING. Several performance compari-

sons between two interpolation algorithms used for, grid

resampling have been made. The two algorithms are the

Akima local bicubic and the parabolic Jancaitis. Statis-

tical comparison of interpolation errors and visual exam-

ination of the output created by the two algorithms show

that they provide very similar performance.

The Jancaitis algorithm has a significant

speed advantage for the implementation scheme utilized in

these tests. Other approaches which took advantage of

favorable relationships between input and output grid

spacing would reduce this advantage.

The Akima method has a better ability to

model severe transitions without overshoot. This advan-

tage did not show up in the test cases but is easily

quantified. The frequency response of the two algorithms

is comparable, with a slight advantage for Jancaitis.
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LINEAR AND HIGHER ORDER FITTING IN CONTOUR-TO-GRID
INTERPOLATION

In the transformation from contour strings to

digital terrain model it is necessary to perform interpo-

lations along elevation profiles to obtain elevation es-

timates at grid nodes. This is done in two different

ways. One is a simple linear scheme based on two eleva-

tions of the profile between which the grid node is posi-

tioned. The other involves the weighted average of two

overlapping quadratic functions. This latter method is a

natural adaption of the two dimensional Jancaitis inter-

polation algorithm discussed in Appendix F.

In order to understand these two methods assume

that (X1 ,EI),(X 2 ,E2 ),(X3 ,E3 ) and (X4 ,E4 ) are four adja-

cent terrain profile pairs giving the relative position

along the profile in the X coordinate and the elevation

in the E coordinate. Furthermore assume that a grid node

is located between the second and third elevation at the

relative position

p = (x-x 2 )/(x3-x2)

For the linear interpolation method the elevation at, the

grid node will be defined by the weighted average of E 2

and E 3 given by

Z = (I-p)E 2 + pE 3
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For the quadratic interpolation scheme two

quadratic functions will be fit to the two sets of data

pairs (XI,EI),(X 2 ,E2 ),(X3 ,E3 ) and (X2 ,E2 ),(X3 ,E3 ), and

(X4 ,E4 ). The coefficients for the first quadratic will

be Aj,BI, and C1 which solve the set of linear equations

X1
2 X, 1 A1  F El

x22 x2  B I  E2

x32 x3  1 C 1  E3j

In a similar manner the coefficients for the second

quadratic will be A2 ,B2 , and C 2 which solve the set of

linear equationsL2 x2x2  12E
x32 x3 1 B 2  = E3

x42 x4 1 C2 E4

Then two estimates of the grid node elevation will be

provided by

Z1 = Alx 2 + Blx + C1
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and

Z2 A2X 
2 + B2X + C2

Finally these two estimates are averaged by use of the

weighting function

W(p) = (1-p)(1-p)(2p+l)

to create the combined estimate

Z =W(P)Z 1 + (1-W(P))Z 2
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CONTOURING ALGORITHM

This appendix contains a more detailed discus-

sion about the logic used in the Curve Priority Contour-

ing program developed for DMA. The subject was original-

ly introduced in Section 4.0.

B.1 Contour Tracing

All contours at level C of Z(x,y) are generated

by systematically examining each grid cell for contour

crossings. If a crossing is encountered, then the ini-

tial point (x01y0 ) is compuited. If (x0 ,y0 ) is a point on

a previously generated curve, then that curve is ignored

and another crossing is sought. When a new curve is lo-

cated, points along the curve are generated for graphic

connection and display. When a new point along the curve

coincides with the curve's initial point (x0 ,y0 ) or is on

the perimeter of the gridded area, then the process tries

to locate another curve at the same level C. After all

grid cells have been examined, another contour value is

selected and the process repeats. It terminates after

all contours of each level have been generated.

The algorithm used to detect a contour crossing

is very simple. If adjacent grid values on the top or
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left side of a grid cell bound the contour level C, then

the curve enters the cell. Otherwise, it does not.

Although this may not detect all types of multiple cross-

ings, that is not a problem since it is most improbable

that this scheme will fail to locate each curve somewhere

within the gridded area.

The initial point (xopy 0 ) for any contour is on

the grid line segment joining the two grid values which

bound the contour value C. Points along the curve con-

sist of all intersections of the curve with the grid

lines plus additional intermediate points as needed to

insure a smooth graphic representation when the points

are connected. The intermediate points along a curve

consists of some or all curve intersections with interme-

diate grid lines laid over the grid cell areas through

which the contour passes. An example of an intermediate

grid is illustrated in Figure 8.1. This shows the two

types of intersection points that are computed.

Intermediate grids can be selected as 2x2, 5x5,

9x9, or 17x17 depending on the accuracy required of the

f inal product. Intermediate grid lines are constructed

so that the exterior lines of the lattice coincide with

the original grid lines which define the cell. Interior
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lines are equally spaced. The 2x2 cases uses a simple-

method in which the interpolation is linear over the four

triangular regions created by the cell center and each of

the four sides. The cell center is assigned an elevation

equal to the -verage of the four nodes. This approach

permits a unique determination of the contour exit from a

cell. On the other hand, the 5x5 grid essentially re-

duces the grid spacing to 1/4 original spacing while com-

puting intersections with a more sophisticated interpola-

tion scheme. Similarly the 9x9 and 17x17 grids reduce

the grid spacing by factors of 1/8 and 1/16 respectively.

Curves are "followed" from one cell to the

next. Starting with the initial point (x01 y0 ), interme-

diate points through the first cell are computed. This

leads to an adjacent cell where another set of intermedi-

ate points are computed. This is continued until the

curve terminates. The entire sequei~ce of points is out-

put for graphic connection and annotation.

Intermediate contour intersections are computed

by two methods. The first is called the Iterative Method

and the second is the Stepping Method. The Iterative

Method is designed to compute only those points necessary

to yield a smooth curve through the cell. To describe

this process, momentarily assume that the curve's entry
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point (xoY o ) and exit point (Xe,Ye) are known. The ob-

jective is to compute a minimum number of intermediate

points (xlyL)2,(x 2 ,y2 )... through the cell and maintain an

accurate fit to the true contour.

Figure B.2 illustrates the process. The dashed

curve shows the path of the unknown contour through the

cell. Initially a straight line joins (xo,y O ) and

(xe,Ye) as a first estimate of the curve. To test the

accuracy, the displacements IXo-XeJ and IYo-YeI are

computed. The larger, say Ixo-xel is halved and rounded

to the x coordinate of the closest intermediate vertical

grid line. For example, with I xo-xe = 1 and a 9x9 local

grid, the rounlded x-coordinate is xf=.5. The objective

is to compute y which solves

Z(xf,y)-C = 0 (B.1)

where xf is fixed and C is the contour value. This is

done iteratively. An initial guess for y is computed as

the intersection of the straight line joining (xo,y O ) to

(xe,Y e ) and the vertical intermediate grid line x=xf.

This yields yf which in turn identifies the two interme-

diate horizontal grid lines which cross above and below

yf at location Ya and Yb respectively on x=xf. Then

Zxf,ya) and Z(xf,Yb) are computed. If these two values

.ri~ the contour value C, then the intersection yf is
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computed by inverse linear interpolation between Ya and

Yb on x-xf.

If the values do not bound the contour value,

then the slope computed using Z(xf,ya) and Z(xf,yb) is

used to predict which direction to step along x=xf in

search of the intersection. If the slope says to move up

the line, then Yb is replaced by Ya from the previous

step and a new Ya is computed. This repeats until the

final point (xf,yf) on the curve is calculated. It is

added to the string of points as (xl,y I ) to obtain

(XoYo),(xlYl),(xe,Ye) where e = 2.

If the distance between the first and last es-

timates for yf is less than the spacing between local

grid lines, then no more intermediates are calculated.

Otherwise, the largest of the four distancejxo-Xll,

yo-ylhXl-X2 , and Iy1,-Y21is selected, halved, and

rounded to the coordinate of the nearest local grid

line. Using the procedure described above, this will in-

sert a new point between (xo,y o ) and (xl,y I ) or (xl,y I )

and (x2 ,y2 ).

When a new point is inserted between two former

points and when the displacement from the initial to

final values for the new point is large relative to the

local grid interval, new points are necessarily calcu-

lated for the two intervals on either side of the new

B-7



point. That is,. if (xk,Yk) is a new point, and the dis-

placement is large, then the intervals between

(xkl1,Ykl) and (xk,Yk) and between (xk,Yk) and

(xk+l,Yk+l) are also divided by new points. If the new

point (xj,yj) between (xk-l,Yk I ) and (xk,yk) has a small

displacement, then no more points are added to that

interval. It remains as (xkIlYk-l),(xjyj),(xkYk).

Alternately, if the new point (xm,y n ) between (xk,y k ) and

(xk+l,Yk+l) has a large displacement, then two more

points must be computed. This would yield a sequence

(xk,Yk),(Xm-1,Ym-1),(xm,Ym),(Xm+lYm+l),(Xk+lYk+l)•

Note that this process terminates with 3 to 5 points

across a grid cell if the curve is nearly straight. More

points are generated when there is considerable surface

curvature across the grid cell.

For the Iterative Tracing Method to work, local

curvature over the area defining Z(x,y) must be relative-

ly small. Otherwise, it is possible for one of the se-

lected local grid lines to intersect the curve two or

more times. This could cause the algorithm to fail. For

example, suppose x=xf is selected and

Z(xf,y)-C = 0

is to be solved. If there are two y values which satisfy

this equation, it is possible that the logic will
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'bounce" back and forth and not find either one. Alter-

nately, it could find the wrong one for the current

situation. When the Iterative Method fails, the

Stepping Method is used to compute the intermediate

points.

The Stepping Method is a micro-level tracing

method. That is, suppose that a local grid, either 5x5,

9x9, or 17x17 is layed over the cell through which the

contour is known to enter at (xo,yo). If Z(x,y) is known

at each node of the local grid, following the curve

through the local grid is fairly simple. Initially, the

curve is on the edge of a local grid cell. It must cross

one of the remaining 3. Which one is determined by find-

ing the Z values which bound C, the contour level. When

the pair are found, the contour point is computed by in-

verse linear interpolation. The new point is shared by

an adjacent local grid cell. Therefore, the process of

checking the other three sides is repeated. The stepping

from one local grid cell to the next terminates when the

exit point from a cell is on one of the original grid

lines. Of course, this leads to a new grid cell and the

Iterative Method is evoked to try for the next step of

intermediate points. The Stepping Method is used only

when the Iterative Method fails.
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In actual operation, the Stepping Method does

not require all values of Z(x,y) on the local grid. Only

values along the path of the curve are computed as they

are required. However, for a 17x17 local grid, at least

15 points are computed if the curve passes between oppo-

site sides of the grid cell.

B.2 Definition of the Local Elevation Model

The above approach requires a mathematical rep-

resentation E(x,y) of the elevation over the grid cell in

question. Moreover, that equation must be simple to

solve in both the formulation of Equation B.1 and the

alternate formulation

Z(x,yf)-C = 0 (B.2)

in which y is fixed and x is allowed to vary. In the

approach used here, the elevation is locally approximated

using 16 adjacent DTM grid values.

Figure B.3 illustrates how these values are

selected. The cell being processed is at the center of

the 4x4 sub-grid extracted from the DTM. This collection

of 16 values can also be partitioned into four 3x3 sub-

grids, all of which have the center cell in common. As

described in Appendix F, which is patterned after materi-

ai by Jancaitis, a quadratic fit can be made to each of

the 3x3 sub-grids to produce 4 separate approximations to
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the elevation over the common center grid cell. These

are called El(x,y) through E4 (x,y). To produce a compos-

ite E(x,y) the four approximations are weighted and

averaged using the formula

4 4

E(xy)= wi(x,y)Ei(x,y)/ wi(x,y)

i=l=l

In the event that one of the quadratic fits, Ei(x,y),

cannot be constructed, then the corresponding weight,

wi(x,y), is identically zero. This means that E(x,y) is

usually the average of four estimates; however, in spec-

ial cases such as along the edge or at the corner of the

DTM, it may be composed of fewer terms.

Because the weighting formula is third order,

E(x,y) is actually a fifth order polynomial in both x and

y. Since solving Equation B.1 or B.2 directly could be

somewhat time-consuming, a further approximation is

made.

Recall that to define Equations B.1 and B.2 a

sub-grid lattice was imposed over the cell being process-

ed. If this sub-grid consists of 17 rows and 17 columns,

where the exterior rows and columns coincide with the

four edges of the DTM cell, then there are 289 locations

within the cell where values of E(x,y) might be tabu-

lated. From the tabulated values it is possible to use
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inverse linear interpolation to solve Equation B.1 or

B.2. For example, if the tabulation values along a hori-

zontal sub-grid line Y=Yk are labeled E(xo,Yk),

E(xl,Yk),...,E(xl7,Yk), and if two adjacent values

(E(xi,Yk) and E(xi+l,Yk), in this set of 17 elevations

straddle the contour L, then the x-coordinate where the

curve crosses the grid line Y=Yk can be computed using

F E(xi,yk)-L -
x = xi + (Xi+l-xi)

E(xiYk)-E(xi+lYk)

Obviously, this formulation is much simplier than solving

a 5th order polynomiai for its roots along the line seg-

ment Y=Yk.

A similar formulation can be produced for any

vertical sub-grid line x=xj. The node values here are

E(xj,yo), E(xj,yl), E(xjY 2 ), etc. If the curve crosses

between two nodes with elevation E(xj,yk) and E(xj,Yk+l)

on the line x=xj, then the y-coordinate of the intersec-

tion (xj,y) is computed by

Y yk + E(xyk)-L jj(Yk+l-Yk) •
(E(xj,Yk)-E(xj,Yk+l)
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B.3 INPUT DATA

The input data for CONTRC is a gridded terrain

elevation model having NROWS horizontal grid lines and N

COLUMNS vertical grid line3. The data must be stored on

a disc file columnwise with NROWS entries per record.

The format is sequential and binary.
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APPI:NI)X C

DERIVATION OF THE ii-IAIRMONIC OPERATOR

The following derivation is along the lines presented

by Briggs [71 and Young [8).

The final result of a gridding procedure should be a

gria model which accurately fits the data and which varies

smoothly between the data points. In mathematical terms, this

smoothness requirement may be rephrased as imposing a minimum

curvature constraint upon the gridded array. This constraint

provides a way to adjust the grid values to provide optimal

smoothness.

Let (xi,yj,zi j ) be a gridded surface array. The

discrete total squared curvature may be defined as

C I (ci,j) 2  
(C.1)

ilj=l

where the curvature of z(x,y) at (i,j) is defined as:

c.~ .Zi .j + Zi.~ + + z. - 4z.
1,) = +i-lj ij-1 il,j+l i,j

for 2 5 i 5 1-1 and 2 S j < J-1

or, c. = Z +Zi - 2z.-
ipj i+l,j 1-1,3j1

for 2 i5 i i5 I-1 and j=l or j=J

or, c.i j = zi,j+1  + zi'j_ 1 - 2zi' j

for 2 < j S J-1 and i=l or i=I

C is minimized when JC = 0 for all ij.

C-1



Six cases must be considered:

1. 2<i<I-i 2. 3"-1

2. 2<i<l-i j 2 ,

3. 2<i<I-l j l

4. i=2 j=l

5. i=2 , j2

6. i=l j=l

All other cases may be obtained by rotations of these six.

Consider first Case I. The minimization requirement

may be written in the expanded form

,_ C (c i , ) 2 + (c ) 2 c 2 a(ci 1) 2 a(c j 2
-- i l~ + . ... J + . j + + ~- + i l -

3z. + z- =z Dz az.if] 11j 1,3  i'j i~j i'j

Since zi) is only contained in the curvature terms given, these

five terms may be expanded further:

2 2(Ci__l__) - __ __. + - +

= 2 [zi+ 2 ,j + zij + Zi+l,j+l + zi+l,j-l- 4z i+l,j

a(Ci-l' 2j = a zi , + - 4zi 2

az. z ~jz + zi-2,j i j+l-j +-,

= 2 [zi,j + zi_2,j + Zi-l,j+l + zi-l - 4zi.1-,j

C-2



I_______ = F Z.il.+ i + z1 1, + z i j 2 + z.i~ - 4z.~ +

= 2 z i ~ l~ j l + z i - 1, j + 1 , i , j + 2 , ) z i j 1

cij 2 1 L]
- + zj. t jj1+1,- 4z,i

-2 zilj1+ zi1j1+ z .. + z i.j 2  ,j

and

11i2 -~ jz + z 4z]

= -6 [zi+l]j IFz+ - + zijl+ 'iji- 4z i~]

Accumulating terms with the sairmz subscripts yields;

2zij + zi2(jz i- + z i,j-1 + z + z-
+2zi 1

1 j+1 +'-j1+ i+l,j+l + i+l,j-l)

-8zi-i,) + i+l,j + i,j-1 + i,j+l C2

Sci , j- - -

For Case 2, 3
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This yields,

19 Z i i+2,j + z i-2,j + Zi~j+2 +. zi-l,j-1 + z ~~-

+ 2(z.il~~ + z. lj~ ) -4z..j-

(C.3)

-8zi-1,j + i+l~j + i,j+l

3(c.ij1 2
For Case 3, iajl _

3 . - = 2 Fzi2 j+ zij- 2 -

and &(c *)1 2 = 2 z- 2_________- 2[z+ 2 ,j + - 2z+ 1j

This yields,

7z. .+ z + z +0j i+2,j i,j+2 + i-l,j+1 + i+l,j+1 zi-2,j

-4zi-1,j +zi,j+1 + i+1,j (C4

Similarly for Case 4,

6z.. . + +zi,) + i,j+2 + i+l,j+l i-l,j+l + i+2,j

(C 5)
-2z i-1,j -4(Z lj + z =j~ 0 ;
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Case 5,

18Z. + z + ztZ
1i,j + zi,j+2 + Zi+2,j + -i,j*I i+l,j-l

+ 2z - 8(Z + z 4(z z 0i ,3 I 1,3+1 i~l,] iJ-I i-l,]
(C.6)

and Case 6,

2z. .zz-2(z.z =0
ij + zi,j+2 + zi+2,j i,j 1 + Zi+l,j (C.7)

Equations C.2 through C.7 define a system of linear

equations, one for each grid position, which relate each Zi, j

to a pattern of surrounding grid values. In matrix form the

system can be represented by

Wz = 0

where z is a vector consisting of all grid entries while W is a

square matrix that is mostly zero filled. The main diagonal is

unity with six minor non-zero diagonals on either side of the

main diagonal. All other entries are zero.

It is possible to solve this system of equations using

classical Gaussian elimination. However, for many applications,

the number of grid entries makes that impractical. Therefore,

iterative means are used to "solve" C.8.

There are various iterative techniques for solving

large systems of linear equations. The method well-suited to

this specific problem is called Successive Overrelaxation or

Extrapolated Leiberman. The iteration equation is

Zi'(j(n) =O[ kZk(n-l) + ZmZm(n) +

(-)z i,jM(n-l) (C.9)
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Where n denotes the iteration index, the computations are applied

systematically to the grid values so that each current Zi,j is

replaced by an updated Zi, j .

The initial Zi,j's denoted by Zi,j(o), must be

established prior to the iterative update process and they should

be as close to the final solution as possible to minimize the

number of iteration.

The first summation in C.9 spans the set of Zi,j's

that have not been modified by the current update while the sec-

ond summation spans those that have been adjusted. For example,

if the iteration proceed down the grid columns and from left-to-

right, then terms in the first sum are always below and right of

the center Zi, j while terms in the second sum are above and

left of Zi, j -

The C) term in C.9 is called the relaxation factor.

WhenW=l, the grid values are "relaxed" by the iterations. That

is, the center term Zi j is simply replaced by a weighted com-

bination of up to 12 surrounding grid values. The specific

weights depend on the position of Zi, j in the matrix as de-

scribed by Cases 1 through 6.

For (>l, over-relaxation results. That is, the new

Zi, j that would be obtained with=l is linearly extrapolated

forward. For example, if zi,j ( n - l ) and Zi,j ( n ) are two

successive iterations produced with W=i and both are moving in

the direction of the solution, then the rate of convergence can

be accelerated by extrapolating forward.

Theoretically, there is an optimum value for W that is

somewhere between 1 and 2. It can be shown that use of (0smaller
than the optimum value slightly reduces the convergence rate.
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II

Also, use of ( )greater than the optimum value yields instabili-

ties and possible divergence. Since the theoretical G. is diffi-
cult to establish, a fixed CJ is typically used. For most situa-

tions(A)=l.3 is satisfactory and values as large asCO=l.5 might

work but frequently cause instabilities in the process. Values

less than 1.3 simply reduce the rate of convergence below that

observed by the emperically selectedj)=l.3.

Not all grid values are recomputed by C.9. Fixed or

known grid values are skipped as the adjustments are applied sys-

tematically to the matrix. Grid entries between fixed values are

adjusted to achieve the minimnum curvature results. Fixed grid

values are analogous to boundary values in differential equation

problems.

The iterations of C.9 with the grid are applied system-

atically in groups of four. The first of four starts at the up-

per left matrix position and works down the columns and from left

to right from column-to-column. This results in a spreading of

information content in fixed values toward the lower right corner

of the matrix. To counter this effect, the second iteration is

applied in exact reverse order to the first. The first and sec-

ond iterations now distribute information in diagonal patterns

within the gridded area. This is countered by iteration three

and four. The third starts at the lower left corner and works to

the upper right corner while the fourth backtracks on the third.

The results are a uniform distribution of information away from

any point on the grid.
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APPENDIX D

LEAST SQUARES INTERI'OLATION IN TWO DIMENSIONS

Consider a set of data (xiy.,zi) to which it is
desired to fit the relation ot a plane

Z(x,y) = A(x-x ) + B(y-y ) + C (D.1)

Assume that the (x,y) values are precise. all uncertainly is in
the z values. Define the squared difference to be minimized

N

E W-.[zi-Z(xiYi)

where N is the number of points tc be interpolated to (xoy o)

and the wi are the weights associated with each of these points.

The "equirement dE=O is imposed to determine the

minimum E, whj;.h implies

N

- = 0 = -B(Yi-Yo)-C(xi-x o )

N

E-B 0 = 2 wi [zi-A(xi-Xo)-B(Yi-Yo)-C(Yi-yo) (D.2)
i= 1

N2EZE [zi-A (x.-Xo 1 ]~
-= 0 = 2 )+B(yi )-C

izl

Rewriting in normal form yields

A.1 (xi-x O ) 2+BEw i (xi-x ) 0 HY i-)+C) i (x i-x 01 1 1

= i.z. ( .- x)
i 1 0

D-1
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A~w . (x.- x ) (yi-yo )+B. (y.-yO 2+) y-o

-i ).UJi(y .- y )(D

For notational convenience, define,

=x i (x i- 0 )

S =y EW )(y.-yO

S yz= EW (yi-yo

S E w.(.-y D
z .1 1

1o E

Sc ix.xz

Thn h nrmleqatos ayb wite i te3x 1r

= X~.(.-yD-2



E ss S lA]
xx xy x 1

S S S IIB S (D. 5)
xy yy y Yj

x y 0-

&t a grid node to be interpolated, x-x 0 and y=y 0  Since

Z(xOYO )=C, only C need be solved for. The result is

S S Sxx xy xz

S S S
xy yy yz

S S S(D)
C= x 5y z (D6

xx xy x

S S S
xy yy y

Sx 5y S0
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APPENDIX E

WEIGHTING FUNCTIONS FOR DIGITAL TERRAIN MODELTNG

The weighting functions used for cartographic

tasks should be appropriate for the type of data to be

interpolated and the use intended. Two weighting func-

tions which are used in contour to grid interpolation and

grid filtering are strictly dependent on relative dist-

ances. The first, which decreases rapidly with distance,

is shown in Figure E.l(a). It is of the form

w(r,R) = (1 -r/R)
2 /(r/R) 2

where r is the distance from the grid node and R is

equivalent to the maximum search distance about the grid

node. This weighting function is suitable for data that

are essentially free of random behavior or observational

error. Such data might be called "deterministic".

A second distance-dependent weighting function

which decreases slowly with distance is shown in Figure

E.l(b). It is of the form

w(r,R) = ( l-r/R)2 (l+2r/R)

where r and R remain as defined in the previous example.

This function is desirable when working with data which

have a random or statistical component since the random

component tends to be averaged out by assigning roughly

equivalent weight to many inputs.

A third weighting function which is of particu-

lar use in contour to grid interpolation is of the form

w(Zl,Z2,r,R) = (ABS(ZI-Z2)/(r/R))

. .. .. t"tmt -IJ I I .. . II l~lE-li



(a) A weighting function
suitable for interpola-
tion of deterministic
functions

0 cut-off

- (b) A weighting function
suitable for interpolation
of functions with a random
or "statistical" component

4 I
a

Figure E.l. Two types of weighting functions
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where Z1 and Z2 are contour elevations on either side of

grid node along a profile, R is the maximum search dist-

ance about the grid node, and r is the current search

distance. This function weights estimates based on two

elevations of similar magnitude very small. Thus grid

nodes which are interior to drains and ridges and thus

surrounded on at least three sides by a single contour

show elevation variation based on search lines which

cross a contour on the fourth "free" side.
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APPENDIX F

THE JANCAITIS INTERPOLATION ALGORITHM

The following is a heuristic development of

ZYCOR's adaption of the Jancaitis interpolation algo-

rithm. An original paper by Jancai i3 and Junkins dis-

cusses the derivation of the weighting functions used in

the algorithm and the motivation for the blending of re-

sults obtained for four overlapping sub-grids (Reference

2). The use of parabolic fits within each 3x3 sub-grid

is a concept developed by ZYCOR.

The purpose of this algorithm is to interpolate

elevation at arbitrary (x,y) locations from elevation

values represented in a matrix or gridded form. The

algorithm assumes that the (x,y) location where elevation

is to be interpolated is within the gridded area, the

grid lines are equally spaced (square grid cells), and

that all grid nodes have an assigned elevation value.

An interpolated value at (x,y) is computed from

16 elevation grid values. The 16 values are at the nodes

of a 4x4 sub-grid where the center cell area contains the

(x,y) location. The 4x4 sub-grid is further decomposed

into four 3x3 sub-grids. Figure F.1 shows the 4x4 sub-

grid and how the four 3x3 sub-grids are extracted.

This arrangement of 4x4 nodes and 3x3 nodes was

selected to simplify the algorithm's implementation.

Note that the central cell of the 4x4 containing (x,y) is

always in the lower right cell position of each 3x3.

This means that one algorithm can be used to interpolate

the elevation for each of the four 3x3 sub-grid areas.
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y) 4x4 nodes selected for the
upper left 3x3

37 11513 9 5

Case
k= 2

48 11614 10 6

The 4x4 Sub-grid Node Ordering (P2 Iq2)

The center cell bounded by nodes 15 11 7
6, 10, 11, and 7 is area over
which interpolation can be per-
formed. Each of the four 3x sub- 4x4 nodes selected for the
grids containing this cell is ro- right 3x3
tated to place it in the lower right
corner.

k=3

0 - P3, q 3 )

2 5 84x4 nodes selected for the
lower right 3x3

3 6 9 4 8 12
Case

The 3x3 Sub-grid Node Ordering k=4

The values selected for node posi- 3 7 11
tion 1 is the entry at position 1,
13, 16, or 4 of the 4x4 sub-grid (P4,q4)
depending on Case=l,2,3, or 4. C
Similarly for the other 8 node 2 6 10
positions. Interpolation is
limited to (p,q) in the lower 4x4 nodes selected for the
right cell bounded by 5,8,9, left 3x3
and 6.

Figure F.I. Node Lay-Outs for 4x4 and 3x3 Sub-Grids
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All that is required is a simple mapping of (x,y) to the

proper positions for each 3x3.

The actual location (x,y) within the elevations

grid is converted to a relative location within a unit

central cell of the 4x4 using the relationships

xR = (x-xo)/ x and YR = (Yo -Y)/ Y (F.1)

where (xo,y o ) is the actual coordinate of the upper left

corner of the center cell. This is the location of the

node labeled 6 in Figure F.I. Note that O<xR<l and

O<ypRl.

The following table gives the relative location

(p,q) of (xR,YR) for each of the four 3x3 sub-grid

cases.

Table F.1

Relationship between (Pk,qk) and (xR,YR) for 3x3 case

3x3 Pk =  qk-

Case

k=l XR=(X-Xo)/ x YR=(Yo-Y)/ y

k=2 l-xR YR

k=3 l-YR l-xR

k=4 XR 1 -YR

If the node positions of each 3x3 are

re-labeled for convenience as shown at the bottom of

Figure F.1, then the index relationship between the

elevations node position in the 4x4 grid and the four 3x3

grids is given by the following table.
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Table F.2

Relationship Between Node Indices of the General 3x3 and

the 4x4 Sub-grid

3x3 4x4 Node Indices
Node
Indices Case 1 Case 2 Case 3 Case 4

1 1 13 16 4

2 2 14 12 3

3 3 15 8 2

4 5 9 15 8

5 6 10 11 7

6 7 11 7 6

7 9 5 14 12

8 10 6 10 11

9 11 7 6 10

Over each of the 3x3 sub-grids a bi-quadratic

surface fit is made to interpolate a value at (p,q) where

(p,q) comes from the relations in Table F.1 The inter-

polation at (p,q) is performed by first interpolating in

the p-direction. Figure F.2 shows where E1 , E2 and E3

are computed. The equations for computing each of E1 , E2
and E3 is given by

Ei(p) = P(P-1 )ei + (l-p2 )ei+3 + P(P+l)ei+ 6 ,
2 2 (F.2)

where the ei's are the elevations in the 3x3 grid. Now,

the 3 Ei's are interpolated in the q-direction to get

E(p,q). The equation is

E(p,q) = q((-l)El(p) + (l-q) 2E2 (P)

+ P(P+l)E 3 (P). (F.3)
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With this equation and the scheme for collect-

ing the ei's for each 3x3 it is possible to compute the

elevation at (p,q) for each of the four 3x3 sub-grids.

Under most circumstances there is little re-:son

to expect the four estimates to agree in value. This

situation is resolved by averaging the four estimates

using

4 4

E(X,y) L W(Pk~qk)Ek(Pk~q/ w (Pk,qk) (F.4)

where (x,y) is related to the (Pk,qk) locations through

Table F.I. The weight function w(p,q) has the general

form

w(p,q) = (l-p) 2 (2p+l)(l-q)2 (2q+l) (F.5)

where Op<l and O<q<1. Note that w(p,q) is third order

in both p and q while E(p,q) is second order in both p

and q. Therefore, E(x,y) is of the fifth order in both p

and q over the central grid cell.

The smooth nature of this interpolating scheme

comes from the blending of individual 3x3 interpolated

values with the weight function w(p,q). Note that when

(xR,YR) is at the node position 6 of the 4x4, i.e.,

when (xRYR)=(0,0), that

w(pl,q l ) = ,

w(P2,q 2 ) = 0 , (F.6)

w(P3,q 3 ) = 0 , and

w(P 4 ,q4 ) = 0
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Hence E(x,y) reduces to

E(x,y) - El(0,0) (F.7)

which means that the interpolated value is equal to the

value at node 6. Similar situations occur for the other

three corner nodes. When (x,y) is at the center of the

central grid cell, all Pi's-.5 and all qi's-.5. Also at

the center the weight function

w(.5,.5) - .25. (F.8)

Therefore, E(x,y) reduces to
4

E(x,y) = 1/4 1 Ek(.5,.5) (F.9)
k=1

Since w(x,yi is smooth over the central cell

area, the weighting scheme smoothly blends the variations

in interpolated elevations from one 3x3 with adjacent

3x3's. Consequently, an overall smooth interpolation

scheme is obtained.

When computing irregularly spaced elevation

values, it is probably necessary to compute E(p,q) and

w(p,q) for each of the four 3x3 sub-grid areas. However,

when the algorithm is used to compute values at the same

relative locations within many grid cells, the number of

computations can be reduced by tabulating the weights and

coefficients of the Ek functions.

This requires four tables. One table has the

values of
w(t) (l-t) 2 (2t+l) (F.10)
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at values of t equal to all values of p and q where

interpolations are made. From w(t), the weights w(p,q)

can be computed with one multiplication. The other three

tables contain values of

t(t-l)/2

(l-t 2 ) , and (F.ll)

t(t+l)/2

at the same values of t as used to tabulated w(t). With

these coefficients the polynomials El(p,q), E2(p,q),

etc. can be computed with 12 multiplications. Finally,

tue weighting requires 4 more multiplications. In all,

17 multiplications are required to compute E(x,y) when

the interpolating locations are always the same within

central grid cells. This compares with 40 multiplica-

tions if E(x,y) is computed without pre-computed and tab-

ulated weights and coefficients.
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APPENDIX G

THE AKIMA BIVARIATE INTERPRELATION ALGORITHM

The Akima algorithm (Reference 3 and 4) is a

local interpolating technique in that elevations can be

interpolated by extracting a small area of the grid

around the location to be interpolated. The interpolated

value depends only on the elevations in the small sub-

grid and not on values beyond the sub-grid. The grid

values that are required to interpolate within a specific

grid cell are illustrated in Figure G.l. Here the center

cell of the configuration contains the (x,y) point where

interpolation is desired. The surrounding grid values

are required to construct the interpolating function over

the central grid cell.

For convenience the (x,y) location in the cen-

tral grid cell is converted to a relative coordinate

(p,q). Then all cells can be treated as if their sides

have unit length and 0<p<l and 0(ql.

The interpolating function over the central

cell with this algorithm is a bi-cubic polynomial of the

form 3 3

e(p,q) = E E Ai,jpiqj (G.l)

i=0 j=0

where the 16 coefficients A 0 ,0 , A 1 ,0 , etc. remain to

be established. This requires at least 16 elevation val-

ues from the provided grid. Note that 24 values are ac-

tually marked in Figure G.l. The additional 8 values are

used in computing weights which provide continuity and

smoothness from central cell-to-cell.
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(xly) Central Cell

Figure G.I. Pattern of elevation grid values required

to interpolate within the central cell
using the Akima Algorithm

Only those numbered cells are used. There are a total

of 24 values employed for each interpolation.
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The 16 coefficients of the polynomial are com-

puted using values of

e, exey, and exy

at the four corners of the central grid cell. Here e is

the elevation, while ex and ey are the partial deriva-

tives with respect to x and y and exy is the cross par-

tial derivative. These four quantities at each of four

corners provide 16 knowns to establish the 16 unknown co-

efficients.

The partial derivatives ex, ey, and exy for

each corner node of the central cell are computed using a

pattern of adjacent elevation values. Figure G.2 illus-

trates the grid positions that are required. Here the

center grid position (3,3) corresponds to one of the four

corner grid positions for the center cell. The computa-

tions described are repeated for each of the four cor-

ners.

The partial ex(3,3) is computed as the weighted

average of the left and right difference equations for

e(3,3). That is

ex(3,3) = (wX,+eX,_+wX,_eX,+)/

(WX,_+Wx,+) (G.2)

where

eX,_ = (e3 ,3-e 2 ,3 )/Ax , and

ex,+ = (e4 ,3-e 3 ,3)/Ax

Since Ax=Ay=l by assumption, division by Ax and AY is

omitted in subsequent difference equations.

The weights applied to the left and right par-

tial estimates are proportional to the curvatures esti-

mated at nodes (3,3) and (4,3) respectively. The weights

are given by
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Indexing o e used to cdenify he te eeain

and the paramaters involved in e X.

Fiqure G.2. Layout and indexing of eleva-
tion grid values used to corn-
pute eX, ey, and eX,y
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wx...a I el, 3-2e2,3+e3,31 ,and

WX,+ M I1e3,3 2e4 ,3+e5,31 . (G.3)

In the special event that both wX,-. and wX,+ are both

zero, then eX(3,3) is computed by

ex(3,3 ) - l/2(eX,-.+eX,+) (G.4)

A similar set of equations are used to compute

ey(3,3). These are

ey(3,3) =(wy,+ey,-+wy,-ey,+)/

where ey,.. and ey,+ are the difference equations

approaching from the top and bottom respectively. The

weights are given by

wy,.. I1e3,1v2e3,2+e3,31 and

WY+= I1e3,3 2e3,4+e3 ,51 ( G.6)
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The cross partial at (3,3) is somewhat more com-

plex. It is estimated by

ex,y(3,3) {wx,_ wy,_(e 3 , 3 -e 2 ,3-e 3 ,2+e 2 , 2 ) +

wy,+(e3,4-e2,4-e3,3+e2,3)1

+ Wx,+I wy,_(e4, 3-e 3 ,3-e 4 ,2 +e 3 ,2) +

Wy ,+l e4,4e3 ,4-e4,3+e3 ,3 )D1l

(Wx,_+Wx,+)(Wy,_.+Wy,+) . (G.7)

Again, the special case of wx,_=Wx,+=O and/or

wy,_-=Wy,+=O is treated by setting the zero weights to

unity.

Note that when wx,_=Wx,+=Wy,_=wy,+=l/2,

these rather formidable weighted difference equations re-

duce to

ex(3,3) = l/2(e 4 ,3-e 2 ,3 ) , (G.8

ey(3,3) = l/2(e 3 ,4-e 3 ,2 ) , and

ex,y(3,3) = l/2(e 2 ,2-e 2 ,4+e 4 ,4-e 4 ,2 )

which are widely recognized as standard difference equa-

tions for estimating these three partial derivatives.

Interpolating based on this scheme must be con-

tinuous between adjacent central interpolating cells since

the same parameters are used to construct the polynomial

along the interface lines between grid cells. For example,

G-6

I



Figure G.3 shows 6 grid elevation nodes. Along the hori-

zontal grid line between nodes C and D the elevations arnd

partials eC, eD,eXC, and eXD are the same whether

they are computed for the central cell A,B,C,D or for the

cell C,D,E,F. Since there is only one cubic which fits

through D and C with values and derivatives given at D and

C, the interface between the two cells must be continuous.

Similarly, since the cross partials are computed so that

ex,y ey,x the same reasoning implies that e y is con-

tinuous across the interface. Thus, interpolated values

will vary smoothly as the interpolating locations (x,y)

move from one central grid cell across the grid lines into

adjacent cells.

The number of operations required to interpolate

a single elevation with this method can be quite signifi-

cant. An optimized version of the algorithm designed to

use as input the unit square grids which are typical of DMA

applications requires 78 floating point multiplies and 139

floating point additions for each interpolation. Thus any

method of implementation which can improve the speed of the

algorithm is of interest.

The complexity of the algorithm is largly attrib-

utable to the great number of calculations necessary to ob-

tain estimates of the various partial derivatives required

at each of the four input grid nodes surrounding the point

at which it is desired to carry out the interpolation.

Given the partial derivatives, calculation of the 16 coef-

ficients of the bi-cubic polynomial used in the interpola-

tion and evaluation of the polynomial itself requires only
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Figure G.3. The interpolating surface over the up-per and lower central cells is Smoothat the grid line interface joining
nodes L and D
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22 floating point multiplications and 64 floating point

additions. This suggests that if the interpolation points

can be ordered relative to the input grid in such a manner

that computed partial derivatives can be saved and reused,

a considerable savings in computation time could be

realized.

Take, for example, a situation where resampling

is at roughly the same density as the input grid and the

new grid points have been sorted and ordered nicely so that

the old grid can be stepped through a column at a time.

For each cell in a particulr column partial derivatives for

one side will already have been calculated when the resam-

pling was performed for the previous column. Also, both

sets of partials for the top of the cell would have been

required to interpolate over the previous cell in the same

column. Thus, in an average situation, only one set of

partial derivatives for a single grid node would need to be

calculated for each interpolation. Taking into account the

numbers mentioned above for floating point operations,this

suggests the possibility of reducing the computation time

for the interpolation operation by more than 50%.
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